Debugging with GDB

The GNU Source-Level Debugger

Ninth Edition, for GDB version 6.7.5020071011

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on GDB to bug-gdb@gnu.org.)
Debugging with GDB
TEXinfo 2004-02-19.09

Copyright (©) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2006 Free Software Foundation, Inc.

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
ISBN 1-882114-77-9

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The FSF’s Back-Cover Text is: “You are free to copy and modify this GNU Man-
ual. Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.”

This edition of the GDB manual is dedicated to the memory of Fred Fish. Fred was a
long-standing contributor to GDB and to Free software in general. We will miss him.

Table of Contents

Summary of GDB............ciiiiiiiinnnn., 1
Free Software 1
Free Software Needs Free Documentation 1
Contributors 10 GDB. ...ttt 3

1 A Sample GDB Session...................... 7

2 Getting Inand Outof GDB................ 11
2.1 Invoking GDBot 11

2.1.1 Choosing Files...........o 12
2.1.2 Choosing Modes 13
2.1.3 What GDB Does During Startup 15
2.2 QUItHNG GDB .ot 16
2.3 Shell Commands 16
2.4 Logging Outputoouii 16

3 GDBCommands...........covvvivviennnn.. 19
3.1 Command Syntaxveiininiiin ... 19
3.2 Command Completion...............iiiiiinneinnen... 19
3.3 Getting Help. ... 21

4 Running Programs Under GDB............. 25
4.1 Compiling for Debugging 25
4.2 Starting your Program............ 26
4.3 Your Program’s Arguments0 ... 27
4.4 Your Program’s Environment 28
4.5 Your Program’s Working Directory 29
4.6 Your Program’s Input and Output........................... 29
4.7 Debugging an Already-running Process 30
4.8 Killing the Child Process 31
4.9 Debugging Programs with Multiple Threads.................. 31
4.10 Debugging Programs with Multiple Processes................ 33
4.11 Setting a Bookmark to Return to Later 35

4.11.1 A Non-obvious Benefit of Using Checkpoints............ 36

5 Stopping and Continuing.................. 37

5.1 Breakpoints, Watchpoints, and Catchpoints 37
5.1.1 Setting Breakpoints.......... 38
5.1.2 Setting Watchpoints 43
5.1.3 Setting Catchpoints............., 45

5.1.4 Deleting Breakpoints............... 46

ii

Debugging with GDB

5.1.5 Disabling Breakpoints............... 47
5.1.6 Break Conditions................ooiiiiieiiinei. .. 48
5.1.7 Breakpoint Command Lists............................. 49
5.1.8 Breakpoint Menus 51
5.1.9 “Cannot insert breakpoints” 51
5.1.10 “Breakpoint address adjusted...” 52
5.2 Continuing and Stepping. ..., 52
5.3 Signalso 56
5.4 Stopping and Starting Multi-thread Programs................ 57
Examining the Stack...................... 61
6.1 Stack Frames 61
6.2 Backtraces......... ... 62
6.3 Selecting a Frame 64
6.4 Information About a Frame................................. 65
Examining Source Files 67
7.1 Printing Source Lines......... i 67
7.2 Editing Source Files...... 68
7.2.1 Choosing your Editor, 69
7.3 Searching Source Files........ 69
7.4 Specifying Source Directories..............., 69
7.5 Source and Machine Code. 72
Examining Data 75
8.1 EXPIeSSIONS . .\ vt v et e et e 75
8.2 Program Variables............. 76
8.3 Artificial Arrays. 77
8.4 Output Formats. 78
8.5 Examining Memory i 79
8.6 Automatic Display 81
8.7 Print Settings...... ... 82
8.8 Value History 88
8.9 Convenience Variables 88
8.10 Registers 90
8.11 Floating Point Hardware................ 91
8.12 Vector Unit........... 92
8.13 Operating System Auxiliary Information.................... 92
8.14 Memory Region Attributes.................. 92
8.14.1 Attributes. 93
8.14.1.1 Memory Access Mode 93
8.14.1.2 Memory Access Size.......covviiiiiiiiiiiiiia. .. 94
8.14.1.3 Data Cache........ i 94
8.14.2 Memory Access Checking.............................. 94
8.15 Copy Between Memory and a File.......................... 94
8.16 How to Produce a Core File from Your Program............. 95
8.17 Character Sets 95

8.18 Caching Data of Remote Targets 98

9 C Preprocessor Macros 101

10 Tracepointscccuu.... 105
10.1 Commands to Set Tracepoints............................. 105
10.1.1 Create and Delete Tracepoints........................ 105
10.1.2 Enable and Disable Tracepoints....................... 106
10.1.3 Tracepoint Passcounts 106
10.1.4 Tracepoint Action Lists 107
10.1.5 Listing Tracepoints i, 108
10.1.6 Starting and Stopping Trace Experiments 108
10.2 Using the Collected Data 109
1021 tfind m ..o 109
10.2.2 tdump. ... 111
10.2.3 save-tracepoints filename 112
10.3 Convenience Variables for Tracepoints 112

11 Debugging Programs That Use Overlays

....................................... 113

11.1 How Overlays Work 113
11.2 Overlay Commandst .. 114
11.3 Automatic Overlay Debugging 116
11.4 Overlay Sample Program 117
12 Using ¢DB with Different Languages..... 119
12.1 Switching Between Source Languages 119
12.1.1 List of Filename Extensions and Languages............ 119
12.1.2 Setting the Working Language........................ 120
12.1.3 Having GDB Infer the Source Language................ 120
12.2 Displaying the Language............... 120
12.3 Type and Range Checking 121
12.3.1 An Overview of Type Checking 121
12.3.2 An Overview of Range Checking...................... 122
12.4 Supported Languages.......... ... 123
1241 Cand CH+ ..o 123
12.4.1.1 Cand C++ Operatorscoooveiin.... 124
12.4.1.2 Cand C++ Constants 125
12.4.1.3 CH++ EXpPressionsoouneniineninne... 126
12.4.1.4 Cand C++ Defaults 127
12.4.1.5 C and C++ Type and Range Checks 127
12416 cpBand C ... 127
12.4.1.7 ¢DB Features for C++ 128
12.4.2 Objective-Co 129
12.4.2.1 Method Names in Commands 129
12.4.2.2 The Print Command With Objective-C........... 130
12.4.3 Fortran 130
12.4.3.1 Fortran Operators and Expressions............... 130

12.4.3.2 Fortran Defaults i .. 130

iv Debugging with GDB

12.4.3.3 Special Fortran Commands 130

12.4.4 Pascalo 131
1245 Modula-2 131
12.4.5.1 Operatorsoonee 131

12.4.5.2 Built-in Functions and Procedures................ 132

12.4.5.3 Constantsiierin 133

12.4.5.4 Modula-2 Types ... 134

12.4.5.5 Modula-2 Defaults 136

12.4.5.6 Deviations from Standard Modula-2.............. 136

12.4.5.7 Modula-2 Type and Range Checks 136

12.4.5.8 The Scope Operators :: and 136

12.4.5.9 ¢pBand Modula-2.......... 137

1246 Ada ... 137
12.4.6.1 Introduction.............. 137

12.4.6.2 Omissions from Ada............................. 138

12.4.6.3 Additionsto Ada 139

12.4.6.4 Stopping at the Very Beginning 140

12.4.6.5 Known Peculiarities of Ada Mode 140

12.5 Unsupported Languagesoooiiniiiin ... 141
13 Examining the Symbol Table............ 143
14 Altering Execution 149
14.1 Assignment to Variables 149
14.2 Continuing at a Different Address 150
14.3 Giving your Program a Signal............................. 151
14.4 Returning from a Function................................ 151
14.5 Calling Program Functions................................ 152
14.6 Patching Programs............ 152
15 GDBFiles........coiiiiiiiiiiiiii.. 155
15.1 Commands to Specify Files 155
15.2 Debugging Information in Separate Files................... 161
15.3 Errors Reading Symbol Files.............. 164
16 Specifying a Debugging Target 167
16.1 Active Targets . ..ot 167
16.2 Commands for Managing Targets.......................... 168

16.3 Choosing Target Byte Order 170

17 Debugging Remote Programs 171

17.1 Connecting to a Remote Target 171
17.2 Using the gdbserver Program 173
17.2.1 Monitor Commands for gdbserver.................... 174
17.3 Remote Configuration iii.... 174
17.4 Implementing a Remote Stub 177
17.4.1 What the Stub Can Do for You....................... 178
17.4.2 What You Must Do for the Stub...................... 179
17.4.3 Putting it All Together......... 180
18 Configuration-Specific Information....... 181
181 Native. ..ot 181
18. 1.1 HP-UX .. 181
18.1.2 BSD libkvm Interface............ 181
18.1.3 SVR4 Process Information 181
18.1.4 Features for Debugging DJGPP Programs 183

18.1.5 Features for Debugging MS Windows PE Executables .. 185
18.1.5.1 Support for DLLs without Debugging Symbols 186

18.1.5.2 DLL Name Prefixes, 186
18.1.5.3 Working with Minimal Symbols 187
18.1.6 Commands Specific to GNU Hurd Systems 188
18.1.7 QNX Neutrino ... 190
18.2 Embedded Operating Systems............................. 190
18.2.1 Using ¢DB with VxWorks 190
18.2.1.1 Connecting to VxWorks 191
18.2.1.2 VxWorks Download 191
18.2.1.3 Running Tasks.......... 192

18.3 Embedded Processors 192
18.3.1 ARM ... 192
18.3.2 Renesas M32R/D and M32R/SDI..................... 194
18.3.3 MO8K . ..ottt 195
18.3.4 MIPS Embedded 195
18.3.5 OpenRISC 1000o 197
18.3.6 PowerPC 199
18.3.7 HP PA Embedded, 199
18.3.8 Tsqware Sparclet i 199
18.3.8.1 Setting File to Debug 200
18.3.8.2 Connecting to Sparclet 200
18.3.8.3 Sparclet Download 200
18.3.8.4 Running and Debugging 201
18.3.9 Fujitsu Sparclite......... 201
18.3.10 Zilog Z8OO0Dottt 201
18.3.11 Atmel AVR ... o 201
18.3.12 CRIS ... o 202
18.3.13 Renesas Super-H 202
18.4 Architectures 202
18.4.1 x86 Architecture-specific Issues....................... 202

18.4.2 A20K ... 203

vi Debugging with GDB

18.4.3 Alpha ... 203
18.4.4 MIPS . ..o 203
18.4.5 HPPA ... 204
18.4.6 Cell Broadband Engine SPU architecture.............. 204

19 Controlling GDBcovvvvnnn... 207
19.1 Prompb.o 207
19.2 Command Editing.......... ... 207
19.3 Command History......... ... 207
19.4 SCreen SIZeo 209
19.5 Numberso 210
19.6 Configuring the Current ABL............ 210
19.7 Optional Warnings and Messages.......................... 211
19.8 Optional Messages about Internal Happenings.............. 213
20 Canned Sequences of Commands 217
20.1 User-defined Commandsiiiiia... 217
20.2 User-defined Command Hooks............................. 218
20.3 Command Files.......... ... 219
20.4 Commands for Controlled OQutput 220
21 Command Interpreters.................. 223
22 GDB Text User Interface................. 225
221 TUIL OVEIVIEW .ottt et et e e e 225
22.2 TUI Key Bindings. 226
22.3 TUI Single Key Mode 227
22.4 TUlI-specific Commandsiiiiiiin... 227
22.5 TUI Configuration Variables 229
23 Using GDB under GNU Emacs 231
24 The ¢pB/MI Interface 233
Function and Purpose i 233
Notation and Terminology 233
24.3 ¢pB/MI Command Syntax..................ooii... 233
24.3.1 GDB/MI Input Syntax.............ccooviiiiieniii.... 233
24.3.2 GDB/MI Output Syntaxccoovuueeeennnna... 234

24.4 GpB/MI Compatibility with CLI........................... 236
24.5 GDB/MI Development and Front Ends 236
24.6 GDpB/MI Output Records....................o.ii.... 236
24.6.1 GDB/MI Result Records 236
24.6.2 GDB/MI Stream Records 237
24.6.3 GDB/MI Out-of-band Records......................... 237

24.7 Simple Examples of GDB/MI Interaction.................... 238

24.8 &pB/MI Command Description Format 239

vii

24.9 &DpB/MI Breakpoint Commands 239
24.10 &DpB/MI Program Context 247
24.11 @pB/MI Thread Commands.................oooiiiiii. ... 249
24.12 GDpB/MI Program Execution.............................. 251
24.13 GDB/MI Stack Manipulation Commands 256
24.14 GDB/MI Variable Objects, 261
24.15 ¢DpB/MI Data Manipulation............... 266
24.16 ¢&pB/MI Tracepoint Commands. 273
24.17 GpB/MI Symbol Query Commands 273
24.18 GpB/MI File Commands 276
24.19 ¢pB/MI Target Manipulation Commands 279
24.20 Miscellaneous GDB/MI Commands........................ 283
25 GDB Annotations 287
25.1 What is an Annotation? 287
25.2 The Server Prefix 288
25.3 Annotation for GDB Input L. 288
254 BEXTOTS . .ottt e 288
25.5 Invalidation Notices......... 289
25.6 Running the Program 289
25.7 Displaying Source 290
26 Reporting BugsinGDB.................. 291
26.1 Have You Found a Bug?..........., 291
26.2 How to Report Bugs i 291
27 Command Line Editing 295
27.1 Introduction to Line Editing 295
27.2 Readline Interaction.......... 295
27.2.1 Readline Bare Essentials 295
27.2.2 Readline Movement Commands. 296
27.2.3 Readline Killing Commands 296
27.2.4 Readline Arguments 297
27.2.5 Searching for Commands in the History 297
27.3 Readline Init File 298
27.3.1 Readline Init File Syntax............................. 298
27.3.2 Conditional Init Constructs 303
27.3.3 SampleInit File.......... 304
27.4 Bindable Readline Commands............................. 307
27.4.1 Commands For Moving 307
27.4.2 Commands For Manipulating The History 307
27.4.3 Commands For Changing Text 309
27.4.4 Killing And Yanking 310
27.4.5 Specifying Numeric Arguments 311
27.4.6 Letting Readline Type For You....................... 311
27.4.7 Keyboard Macros.oouiiniiiii i 311
27.4.8 Some Miscellaneous Commands....................... 312

275 Readline vi Mode 313

viii Debugging with GDB

28 Using History Interactively.............. 315
28.1 History Expansion i 315
28.1.1 Event Designators.............. ... 315
28.1.2 Word Designators i 315
28.1.3 Modifiers 316

Appendix A Formatting Documentation.... 319

Appendix B Installing GDB 321
B.1 Requirements for Building GDB 321
B.2 Invoking the GDB ‘configure’ Script....................... 321
B.3 Compiling GDB in Another Directory....................... 323
B.4 Specifying Names for Hosts and Targets 323
B.5 ‘configure’ Options...............cooiiiiiiiiiiii. 324

Appendix C Maintenance Commands 327

Appendix D GDB Remote Serial Protocol ... 333

Dl OVerview 333
D.2 Packets........oo 334
D.3 Stop Reply Packets 341
D.4 General Query Packets........... 342
D.5 Register Packet Format 351
D.6 Tracepoint Packets 351
D.7 Interrupts.o 354
D.8 Exampleso 354
D.9 File-I/O Remote Protocol Extension 354
D.9.1 File-I/O Overview. 354
D.9.2 Protocol Basics 355
D.9.3 The F Request Packet 356
D.94 TheF Reply Packet 356
D.9.5 The ‘Ctrl-C MeSSage oevvvinetineeeieeineenn. 356
D.9.6 Console I/O 357
D.9.7 List of Supported Calls............. 357

[0 01 4 PP 357

ClOSE . oo 359

Y 359

WIIEE .« oo 359

Iseek ..o 360
TENAINIE « « vttt et et et e e et et e e e e e e 360
unlink . ..o 361
stat/fstat 361
gettimeofday 362
ISALEY .« oo 362
SYSEEIML . ..o 362

D.9.8 Protocol-specific Representation of Datatypes 363

Integral Datatypes ... 363

Pointer Values 363
Memory Transfer............. i 363
struct stat ... 364
struct timeval 364

D.9.9 Constantsooiiiiii 365
Open Flags 365
mode_t Values ... 365
Errno Values. 365
Lseek Flagso 366
Limits. ..o 366
D.9.10 File-I/O Examples 366
D.10 Library List Format, 366
D.11 Memory Map Format 367

Appendix E The GDB Agent Expression

Mechanism............................. 369
E.1 General Bytecode Design 369
E.2 Bytecode Descriptions. ... 371
E.3 Using Agent Expressions ..., 375
E.4 Varying Target Capabilities................... 376
E.5 Tracing on Symmetrix. ..., 376
E.6 Rationale 378

Appendix F Target Descriptions........... 381
F.1 Retrieving Descriptions. 381
F.2 Target Description Format............. 382

F2.1 Inclusion, 382

F.2.2 Architecture 382

F.2.3 Features........ ..o 383

F24 Types ..o 383

F.25 Registers 383
F.3 Predefined Target Typesoooiiiiiiiiiin. .. 384
F.4 Standard Target Features...................... 385

F4.1 ARM Featuresoooiiiiiiiiienn, 385

F.4.2 MIPS Features ..., 385

F.4.3 M68K Features................. i 386

Appendix G GNU GENERAL PUBLIC

LICENSE..........oiiiiiii .. 387

Preamble. 387
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 388

How to Apply These Terms to Your New Programs............... 392

ix

X Debugging with GDB

Appendix H GNU Free Documentation License
....................................... 393
H.1 ADDENDUM: How to use this License for your documents .. 399

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++. For more information, see
Section 12.4 [Supported Languages], page 123. For more information, see Section 12.4.1 [C
and C++|, page 123.

Support for Modula-2 is partial. For information on Modula-2, see Section 12.4.5
[Modula-2], page 131.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

GDB can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free Software

GDB is free software, protected by the GNU General Public License (GPL). The GPL gives
you the freedom to copy or adapt a licensed program—but every person getting a copy also
gets with it the freedom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical software companies use
copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve
these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

2 Debugging with GDB

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with
restrictive terms—mno copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval-—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up
to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you're not sure whether a proposed
license is free, write to 1licensing@gnu.org.

mailto:licensing@gnu.org

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid
for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs. Many
others have contributed to its development. This section attempts to credit major contrib-
utors. One of the virtues of free software is that everyone is free to contribute to it; with
regret, we cannot actually acknowledge everyone here. The file ‘Changelog’ in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0,
5.3, 5.2, 5.1 and 5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs
(release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman
and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1,
4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the ¢NU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats; BFD was
a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the IST Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki
Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.

4 Debugging with GDB

Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support. Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K GNU/Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GpB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the 1960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for H8/300,
H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vrdxxx, and Vrixxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R /D proces-
sors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, lan Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the Text User Interface (nee Terminal User
Interface): Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann, Satish
Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-specific
information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB fulltime include Mark Alexander, Jim

Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, lan Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Eigler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for Cygnus Solu-
tions, implemented the original GDB/MI interface.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

Andrew Cagney designed GDB’s architecture vector. Many people including Andrew
Cagney, Stephane Carrez, Randolph Chung, Nick Duffek, Richard Henderson, Mark Ket-
tenis, Grace Sainsbury, Kei Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab,
Jason Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped with the
migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented GDB’s unwinder framework,
this consisting of a fresh new design featuring frame IDs, independent frame sniffers, and
the sentinel frame. Mark Kettenis implemented the DWARF 2 unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and trad unwinders.
The architecture-specific changes, each involving a complete rewrite of the architecture’s
frame code, were carried out by Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew
Cagney, Stephane Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei Sakamoto, Yoshinori
Sato, Michael Snyder, Corinna Vinschen, and Ulrich Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from Tensilica, Inc.
contributed support for Xtensa processors. Others who have worked on the Xtensa port of
GDB in the past include Steve Tjiang, John Newlin, and Scott Foehner.

Debugging with GDB

Chapter 1: A Sample GDB Session 7

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. However, a handful of
commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4

$./m4
define(f0o0,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

Ctrl-d

m4: End of input: 0: fatal error: EOF in string
Let us use GDB to try to see what is going on.

$ gdb m4

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB 6.7.50_20071011, Copyright 1999 Free Software Foundation, Inc...

(gdb)
GDB reads only enough symbol data to know where to find the rest when needed; as a result,
the first prompt comes up very quickly. We now tell GDB to use a narrower display width
than usual, so that examples fit in this manual.

(gdb) set width 70
We need to see how the m4 built-in changequote works. Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

(gdb) break m4_changequote

Breakpoint 1 at 0x62f4: file builtin.c, line 879.
Using the run command, we start m4 running under GDB control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

8 Debugging with GDB

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/mé
define(f00,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc(TOKEN_DATA_TEXT (argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n

882 set_quotes((argc >= 2) 7 TOKEN_DATA_TEXT(argv[1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s
(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s

set_quotes (1gq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt

#0 set_quotes (1q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s

0x3bbc 532 if (rquote != def_rquote)

(gdb) s

0x3b80 535 lquote = (1q == nil || *1q == ’\0’) 7 \

def_lquote : xstrdup(lq);

(gdb) n

536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup(rq);

(gdb) n

538 len_lquote = strlen(rquote);

Chapter 1: A Sample GDB Session 9

The last line displayed looks a little odd; we can examine the variables 1quote and rquote
to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote

$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote

$2 = 0x35d50 "<UNQUOTE>"
lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the 1 (1ist) command.

(gdb) 1

533 xfree(rquote) ;

534

535 lquote = (1g == nil || *1q == ’\0’) 7 def_lquote\
: xstrdup (1q);

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n

539 len_rquote = strlen(lquote);

(gdb) n

540 }

(gdb) p len_lquote

$3 =9

(gdb) p len_rquote

$4 =7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of 1quote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len_lquote=strlen(lquote)

$6 =7
(gdb) p len_rquote=strlen(rquote)
$6 =9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the ¢ (continue) command, and then try the example
that caused trouble initially:

(gdb) ¢
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

10 Debugging with GDB

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

Ctrl-d

Program exited normally.
The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished execut-
ing. We can end our GDB session with the GDB quit command.

(gdb) quit

Chapter 2: Getting In and Out of GDB 11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:
e type ‘gdb’ to start GDB.
e type quit or Ctrl-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program
You can also start with both an executable program and a core file specified:
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

gdb program 1234
would attach GDB to process 1234 (unless you also have a file named ‘1234’; GDB does check
for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using ——args. This option stops option processing.

gdb --args gcc -02 -c foo.c

This will cause gdb to debug gce, and to set gcc’s command-line arguments (see Sec-
tion 4.3 [Arguments|, page 27) to ‘-02 -c foo.c’.

You can run gdb without printing the front material, which describes GDB’s
non-warranty, by specifying -silent:

gdb -silent
You can further control how GDB starts up by using command-line options. GDB itself can
remind you of the options available.
Type

gdb -help
to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing Files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘-se’ and ‘-c¢’ (or ‘-p’) options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘=c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, GDB will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent GDB from treating it as a pid by prefixing it with ./, e.g. ©./12345’.

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. GDB
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘-=’ rather
than ‘-’, though we illustrate the more usual convention.)

—-symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

—-core file
-c file Use file file as a core dump to examine.

—-c number

-pid number

-p number
Connect to process ID number, as with the attach command. If there is no
such process, GDB will attempt to open a core file named number.

-command file
-x file Execute GDB commands from file file. See Section 20.3 [Command files],
page 219.

—eval-command command
—-ex command
Execute a single GDB command.

This option may be used multiple times to call multiple commands. It may also
be interleaved with ‘~command’ as required.
gdb -ex ’target sim’ -ex ’load’ \
-x setbreakpoints -ex ’run’ a.out
—-directory directory
-d directory
Add directory to the path to search for source and script files.

Chapter 2: Getting In and Out of GDB 13

-r
-readnow

Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

2.1.2 Choosing Modes

You can run GDB in various alternative modes—for example, in batch mode or quiet mode.

-nx
-n

-quiet
-silent
-q

-batch

Do not execute commands found in any initialization files. Normally, GDB exe-
cutes the commands in these files after all the command options and arguments
have been processed. See Section 20.3 [Command Files|, page 219.

“Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-batch-silent

Run in batch mode exactly like ‘-batch’, but totally silently. All GDB output to
stdout is prevented (stderr is unaffected). This is much quieter than ‘-silent’
and would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via GDB, as opposed to writing directly
to stdout, will also be made silent.

-return-child-result

The return code from GDB will be the return code from the child process (the
process being debugged), with the following exceptions:

e GDB exits abnormally. E.g., due to an incorrect argument or an internal
error. In this case the exit code is the same as it would have been without
‘-return-child-result’.

e The user quits with an explicit value. E.g., ‘quit 1’.

e The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.

14 Debugging with GDB

This option is useful in conjunction with ‘~batch’ or ‘-batch-silent’, when
GDB is being used as a remote program loader or simulator interface.

-nowindows

-nw “No windows”. If GDB comes with a graphical user interface (GUI) built in,
then this option tells GDB to only use the command-line interface. If no GUI is
available, this option has no effect.

-windows
-w If ¢DB includes a GUI, then this option requires it to be used if possible.

-cd directory
Run GDB using directory as its working directory, instead of the current direc-
tory.

—-fullname

-f GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

-epoch The Epoch Emacs-GDB interface sets this option when it runs GDB as a subpro-
cess. It tells GDB to modify its print routines so as to allow Epoch to display
values of expressions in a separate window.

—annotate level

This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 25 [Annotations], page 287). The annota-
tion level controls how much information GDB prints together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
3 is the maximum annotation suitable for programs that control GDB, and level
2 has been deprecated.

The annotation mechanism has largely been superseded by GDB/MI (see Chap-
ter 24 [GDB/MI], page 233).

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps
-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

-1 timeout
Set the timeout (in seconds) of any communication used by GDB for remote
debugging.

Chapter 2: Getting In and Out of GDB 15

-tty device
-t device
Run using device for your program’s standard input and output.

-tui Activate the Text User Interface when starting. The Text User Interface man-
ages several text windows on the terminal, showing source, assembly, regis-
ters and GDB command outputs (see Chapter 22 [GDB Text User Interface],
page 225). Alternatively, the Text User Interface can be enabled by invoking
the program ‘gdbtui’. Do not use this option if you run GDB from Emacs (see
Chapter 23 [Using GDB under GNU Emacs], page 231).

-interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB using
it as a back end. See Chapter 21 [Command Interpreters]|, page 223.

‘~-interpreter=mi’ (or ‘--interpreter=mi2’) causes GDB to use the GDB/MI
interface (see Chapter 24 [The GDB/MI Interface], page 233) included since GDB
version 6.0. The previous GDB/MI interface, included in GDB version 5.3 and
selected with ‘--interpreter=mil’, is deprecated. Earlier GDB/MI interfaces
are no longer supported.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 14.6 [Patching],
page 152).

-statistics

This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb, and
exit.

2.1.3 What ¢DpB Does During Startup

Here’s the description of what GDB does during session startup:

1. Sets up the command interpreter as specified by the command line (see Section 2.1.2
[Mode Options], page 13).
2. Reads the init file (if any) in your home directory! and executes all the commands in

that file.
3. Processes command line options and operands.

4. Reads and executes the commands from init file (if any) in the current working direc-
tory. This is only done if the current directory is different from your home directory.
Thus, you can have more than one init file, one generic in your home directory, and
another, specific to the program you are debugging, in the directory where you invoke
GDB.

5. Reads command files specified by the ‘-x’ option. See Section 20.3 [Command Files],
page 219, for more details about GDB command files.

1 On DOS /Windows systems, the home directory is the one pointed to by the HOME environment variable.

16 Debugging with GDB

6. Reads the command history recorded in the history file. See Section 19.3 [Command
History], page 207, for more details about the command history and the files where
GDB records it.

Init files use the same syntax as command files (see Section 20.3 [Command Files],
page 219) and are processed by GDB in the same way. The init file in your home directory
can set options (such as ‘set complaints’) that affect subsequent processing of command
line options and operands. Init files are not executed if you use the ‘-nx’ option (see
Section 2.1.2 [Choosing Modes], page 13).

The GDB init files are normally called ‘.gdbinit’. The DJGPP port of GDB uses the
name ‘gdb.ini’, due to the limitations of file names imposed by DOS filesystems. The
Windows ports of GDB use the standard name, but if they find a ‘gdb.ini’ file, they warn
you about that and suggest to rename the file to the standard name.

2.2 Quitting GDB

quit [expression]|

q To exit GDB, use the quit command (abbreviated q), or type an end-of-file
character (usually Ctrl-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often Ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

If you have been using GDB to control an attached process or device, you can release

it with the detach command (see Section 4.7 [Debugging an Already-running Process],
page 30).

2.3 Shell Commands

If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a standard shell to execute command string. If it exists, the environment
variable SHELL determines which shell to run. Otherwise GDB uses the default
shell (‘/bin/sh’ on Unix systems, ‘COMMAND.COM’ on MS-DOS, etc.).

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

2.4 Logging Output

You may want to save the output of GDB commands to a file. There are several commands
to control GDB’s logging.

Chapter 2: Getting In and Out of GDB 17

set logging on
Enable logging.

set logging off
Disable logging.

set logging file file
Change the name of the current logfile. The default logfile is ‘gdb.txt’.

set logging overwrite [on|off]
By default, ¢DB will append to the logfile. Set overwrite if you want set
logging on to overwrite the logfile instead.

set logging redirect [on|off]
By default, ¢DB output will go to both the terminal and the logfile. Set
redirect if you want output to go only to the log file.

show logging
Show the current values of the logging settings.

18

Debugging with GDB

Chapter 3: GbB Commands 19

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain GDB commands by typing just
RET). You can also use the key to get GDB to fill out the rest of a word in a command
(or to show you the alternatives available, if there is more than one possibility).

3.1 Command Syntax

A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends on
the command name. For example, the command step accepts an argument which is the
number of times to step, as in ‘step 5. You can also use the step command with no
arguments. Some commands do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just (RET)) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.
User-defined commands can disable this feature; see Section 20.1 [Define], page 217.

The 1ist and x commands, when you repeat them with (RET), construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 19.4 [Screen Size], page 209). Since it is easy to press
one too many in this situation, GDB disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 20.3 [Command Files], page 219).

The Ctrl-o binding is useful for repeating a complex sequence of commands. This
command accepts the current line, like (RET), and then fetches the next line relative to the
current line from the history for editing.

3.2 Command Completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your program.

Press the key whenever you want GDB to fill out the rest of a word. If there is only
one possibility, GDB fills in the word, and waits for you to finish the command (or press
to enter it). For example, if you type

(gdb) info bre
GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

20 Debugging with GDB

(gdb) info breakpoints

You can either press at this point, to run the info breakpoints command, or
backspace and enter something else, if ‘breakpoints’ does not look like the command you
expected. (If you were sure you wanted info breakpoints in the first place, you might as
well just type immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you press (TAB), GDB sounds
a bell. You can either supply more characters and try again, or just press a second
time; ¢DB displays all the possible completions for that word. For example, you might want
to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b
make_(TAB) GDB just sounds the bell. Typing again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_
GDB sounds bell; press again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing twice. M-? means 7. You can type this either by holding down
a key designated as the shift on your keyboard (if there is one) while typing 7, or as
followed by ?.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that ¢GDB normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int
parameter, name (int), or the version that takes a float parameter, name (float). To use
the word-completion facilities in this situation, type a single quote > at the beginning of the
function name. This alerts GDB that it may need to consider more information than usual
when you press or M-7 to request word completion:

(gdb) b ’bubble(M-?
bubble (double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub

GDB alters your input line to the following, and rings a bell:
(gdb) b ’bubble(

Chapter 3: ¢bB Commands 21

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 12.4.1.3 [C++ Expressions],
page 126. You can use the command set overload-resolution off to disable overload
resolution; see Section 12.4.1.7 [GDB Features for C++|, page 128.

3.3 Getting Help

You can always ask GDB itself for information on its commands, using the command help.

help
h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without
stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

help class
Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

(gdb) help status
Status inquiries.

List of commands:

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things

about the debugger

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
(gdb)

22 Debugging with GDB

help command
With a command name as help argument, GDB displays a short paragraph on
how to use that command.

apropos args
The apropos command searches through all of the GDB commands, and their
documentation, for the regular expression specified in args. It prints out all
matches found. For example:

apropos reload

results in:

set symbol-reloading -- Set dynamic symbol table reloading
multiple times in one run

show symbol-reloading -- Show dynamic symbol table reloading
multiple times in one run

complete args
The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:
if
ignore
info
inspect

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the
state of your program, or the state of GDB itself. Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context. The listings under
info and under show in the Index point to all the sub-commands. See [Index], page 401.

info This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

set You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

Chapter 3: GbB Commands 23

show version

Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB in
GNU/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
info copying
Display information about permission for copying GDB.

show warranty

info warranty
Display the aNU “NO WARRANTY?” statement, or a warranty, if your version
of GDB comes with one.

24

Debugging with GDB

Chapter 4: Running Programs Under GDB 25

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information when
you compile it.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when
you compile it. This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Programs that are to be shipped to your customers are compiled with optimizations,
using the ‘-0’ compiler option. However, many compilers are unable to handle the ‘-g’ and
‘-0’ options together. Using those compilers, you cannot generate optimized executables
containing debugging information.

Gce, the GNU C/C++ compiler, supports ‘-g’ with or without ‘-0’ making it possible
to debug optimized code. We recommend that you always use ‘-g’ whenever you compile
a program. You may think your program is correct, but there is no sense in pushing your
luck.

When you debug a program compiled with ‘-g -0’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too surprised
when the execution path does not exactly match your source file! An extreme example: if
you define a variable, but never use it, GDB never sees that variable—because the compiler
optimizes it out of existence.

Some things do not work as well with ‘~g -0’ as with just ‘-g’, particularly on machines
with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the
problem, please report it to us as a bug (including a test case!). See Section 8.2 [Variables],
page 76, for more information about debugging optimized code.

Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your GNU C compiler has this option,
do not use it.

GDB knows about preprocessor macros and can show you their expansion (see Chapter 9
[Macros|, page 101). Most compilers do not include information about preprocessor macros
in the debugging information if you specify the ‘-g’ flag alone, because this information is
rather large. Version 3.1 and later of Gcc, the GNU C compiler, provides macro information
if you specify the options ‘-gdwarf-2’ and ‘-g3’; the former option requests debugging
information in the Dwarf 2 format, and the latter requests “extra information”. In the
future, we hope to find more compact ways to represent macro information, so that it can
be included with ‘-g’ alone.

26 Debugging with GDB

4.2 Starting your Program

run

r Use the run command to start your program under GDB. You must first specify
the program name (except on VxWorks) with an argument to GDB (see Chap-
ter 2 [Getting In and Out of GDB|, page 11), or by using the file or exec-file
command (see Section 15.1 [Commands to Specify Files], page 155).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. See Section 4.3
[Your Program’s Arguments], page 27.

The environment.
Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your Program’s
Environment|, page 28.

The working directory.
Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See Section 4.5 [Your Pro-
gram’s Working Directory]|, page 29.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your Program’s Input and Output], page 29.

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and Continuing|, page 37, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 8 [Examining Datal, page 75.

Chapter 4: Running Programs Under GDB 27

If the modification time of your symbol file has changed since the last time GDB read its
symbols, ¢DB discards its symbol table, and reads it again. When it does this, GDB tries to
retain your current breakpoints.

start The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main procedure is called. This depends on the languages used
to write your program. In C++, for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, insert breakpoints in your elaboration code before
running your program.

4.3 Your Program’s Arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/0O, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell GDB uses. If you do not define SHELL, GDB uses the default shell (‘/bin/sh’ on
Unix).

On non-Unix systems, the program is usually invoked directly by GDB, which emulates
I/0 redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

28 Debugging with GDB

4.4 Your Program’s Environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by G¢DB does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:” on Unix, ;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved

to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working direc-
tory at the time GDB searches the path. If you use ‘.’ instead, it refers to the
directory where you executed the path command. GDB replaces ‘.’ in the di-
rectory argument (with the current path) before adding directory to the search

path.

show paths
Display the list of search paths for executables (the PATH environment variable).

show environment |[varname|
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your program
only, not for GDB itself. value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated, the variable is set to
a null value.

For example, this command:
set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=" are used for clarity here; they are not actually
required.)

unset environment varname
Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Warning: On Unix systems, GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names a

Chapter 4: Running Programs Under GDB 29

shell that runs an initialization file—such as ‘. cshrc’ for C-shell, or ‘.bashrc’ for BASH—
any variables you set in that file affect your program. You may wish to move setting of
environment variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your Program’s Working Directory

Each time you start your program with run, it inherits its working directory from the current
working directory of GDB. The GDB working directory is initially whatever it inherited from
its parent process (typically the shell), but you can specify a new working directory in GDB
with the cd command.

The ¢DB working directory also serves as a default for the commands that specify files
for GDB to operate on. See Section 15.1 [Commands to Specify Files], page 155.

cd directory
Set the ¢DB working directory to directory.

pwd Print the GDB working directory.

It is generally impossible to find the current working directory of the process being
debugged (since a program can change its directory during its run). If you work on a system
where GDB is configured with the ‘/proc’ support, you can use the info proc command
(see Section 18.1.3 [SVR4 Process Information|, page 181) to find out the current working
directory of the debuggee.

4.6 Your Program’s Input and Output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses. GDB switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,

run > outfile
starts your program, diverting its output to the file ‘outfile’.

Another way to specify where your program should do input and output is with the
tty command. This command accepts a file name as argument, and causes this file to be
the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output
on the terminal ‘/dev/ttyb’ and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

30 Debugging with GDB

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal. tty is an
alias for set inferior-tty.

You can use the show inferior-tty command to tell GDB to display the name of the
terminal that will be used for future runs of your program.

set inferior-tty /dev/ttyb
Set the tty for the program being debugged to /dev/ttyb.

show inferior-tty
Show the current tty for the program being debugged.

4.7 Debugging an Already-running Process

attach process-id
This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -1’ shell command.

attach does not repeat if you press a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 7.4 [Specifying Source Directories|, page 69). You can
also use the file command to load the program. See Section 15.1 [Commands to Specify
Files|, page 155.

The first thing GDB does after arranging to debug the specified process is to stop it. You
can examine and modify an attached process with all the GDB commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, you
may use the continue command after attaching GDB to the process.

detach When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. Detaching the process continues its
execution. After the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press again after
executing the command.

If you exit GDB while you have an attached process, you detach that process. If you use
the run command, you kill that process. By default, GDB asks for confirmation if you try
to do either of these things; you can control whether or not you need to confirm by using
the set confirm command (see Section 19.7 [Optional Warnings and Messages|, page 211).

Chapter 4: Running Programs Under GDB 31

4.8 Killing the Child Process

kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process.
GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, GDB notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging Programs with Multiple Threads

In some operating systems, such as HP-UX and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
e automatic notification of new threads
e ‘thread threadno’, a command to switch among threads
e ‘info threads’, a command to inquire about existing threads

e ‘thread apply [threadno] [all] args’, a command to apply a command to a list of
threads

e thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configuration
where the operating system supports threads. If your GDB does not support
threads, these commands have no effect. For example, a system without thread
support shows no output from ‘info threads’, and always rejects the thread
command, like this:

(gdb) info threads

(gdb) thread 1

Thread ID 1 not known. Use the "info threads" command to

see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program
runs—but whenever GDB takes control, one thread in particular is always the focus of
debugging. This thread is called the current thread. Debugging commands show program
information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system’s iden-
tification for the thread with a message in the form ‘ [New systag]’. systag is a thread iden-
tifier whose form varies depending on the particular system. For example, on GNU/Linux,
you might see

32 Debugging with GDB

[New Thread 46912507313328 (LWP 25582)]
when GDB notices a new thread. In contrast, on an SGI system, the systag is simply

something like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):
1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

On HP-UX systems:

For debugging purposes, GDB associates its own thread number—a small integer assigned
in thread-creation order—with each thread in your program.

Whenever GDB detects a new thread in your program, it displays both GDB’s thread
number and the target system’s identification for the thread with a message in the form
‘[New systag]’. systag is a thread identifier whose form varies depending on the particular
system. For example, on HP-UX, you see

[New thread 2 (system thread 26594)]

when GDB notices a new thread.
info threads

Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):

1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
* 3 system thread 26607 worker (wptr=0x7b09c318 "@") \

at quicksort.c:137
2 system thread 26606 0x7b0030d8 in __ksleep () \

from /usr/lib/libc.2
1 system thread 27905 0x7b003498 in _brk () \

Chapter 4: Running Programs Under GDB 33

from /usr/lib/libc.2

On Solaris, you can display more information about user threads with a Solaris-specific
command:

maint info sol-threads
Display info on Solaris user threads.

thread threadno

Make thread number threadno the current thread. The command argument
threadno is the internal GDB thread number, as shown in the first field of the
‘info threads’ display. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:

(gdb) thread 2

[Switching to process 35 thread 23]

0x34e5 in sigpause ()
As with the ‘[New ...]" message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

thread apply [threadno] [all] command
The thread apply command allows you to apply the named command to one
or more threads. Specify the numbers of the threads that you want affected
with the command argument threadno. It can be a single thread number, one
of the numbers shown in the first field of the ‘info threads’ display; or it could
be a range of thread numbers, as in 2-4. To apply a command to all threads,
type thread apply all command.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the context
switch with a message of the form ‘[Switching to systag]’ to identify the thread.

See Section 5.4 [Stopping and Starting Multi-thread Programs], page 57, for more infor-
mation about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting Watchpoints|, page 43, for information about watchpoints in
programs with multiple threads.

4.10 Debugging Programs with Multiple Processes

On most systems, GDB has no special support for debugging programs which create addi-
tional processes using the fork function. When a program forks, GDB will continue to debug
the parent process and the child process will run unimpeded. If you have set a breakpoint
in any code which the child then executes, the child will get a SIGTRAP signal which (unless
it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It
may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB (a new invocation
of GDB if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 30). From that point on you can debug the child process just like
any other process which you attached to.

34 Debugging with GDB

On some systems, GDB provides support for debugging programs that create additional
processes using the fork or vfork functions. Currently, the only platforms with this feature
are HP-UX (11.x and later only?) and GNU/Linux (kernel version 2.5.60 and later).

By default, when a program forks, GDB will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode
Set the debugger response to a program call of fork or vfork. A call to fork
or vfork creates a new process. The mode argument can be:

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

child The new process is debugged after a fork. The parent process runs
unimpeded.

show follow-fork-mode
Display the current debugger response to a fork or vfork call.

On Linux, if you want to debug both the parent and child processes, use the command
set detach-on-fork.

set detach-on-fork mode
Tells gdb whether to detach one of the processes after a fork, or retain debugger
control over them both.

on The child process (or parent process, depending on the value of
follow-fork-mode) will be detached and allowed to run indepen-
dently. This is the default.

off Both processes will be held under the control of GDB. One process
(child or parent, depending on the value of follow-fork-mode) is
debugged as usual, while the other is held suspended.

show detach-on-follow
Show whether detach-on-follow mode is on/off.

If you choose to set detach-on-follow mode off, then GDB will retain control of all forked
processes (including nested forks). You can list the forked processes under the control of
GDB by using the info forks command, and switch from one fork to another by using the
fork command.

info forks
Print a list of all forked processes under the control of GDB. The listing will
include a fork id, a process id, and the current position (program counter) of
the process.

fork fork-id
Make fork number fork-id the current process. The argument fork-id is the
internal fork number assigned by GDB, as shown in the first field of the ‘info
forks’ display.

Chapter 4: Running Programs Under GDB 35

To quit debugging one of the forked processes, you can either detach from it by using
the detach fork command (allowing it to run independently), or delete (and kill) it using
the delete fork command.

detach fork fork-id
Detach from the process identified by GDB fork number fork-id, and remove it
from the fork list. The process will be allowed to run independently.

delete fork fork-id
Kill the process identified by ¢DB fork number fork-id, and remove it from the
fork list.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

When a child process is spawned by vfork, you cannot debug the child or parent until
an exec call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name as
its argument.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec
call is made. See Section 5.1.3 [Setting Catchpoints], page 45.

4.11 Setting a Bookmark to Return to Later

On certain operating systems', GDB is able to save a snapshot of a program’s state, called
a checkpoint, and come back to it later.

Returning to a checkpoint effectively undoes everything that has happened in the pro-
gram since the checkpoint was saved. This includes changes in memory, registers, and even
(within some limits) system state. Effectively, it is like going back in time to the moment
when the checkpoint was saved.

Thus, if you're stepping thru a program and you think you’re getting close to the point
where things go wrong, you can save a checkpoint. Then, if you accidentally go too far and
miss the critical statement, instead of having to restart your program from the beginning,
you can just go back to the checkpoint and start again from there.

This can be especially useful if it takes a lot of time or steps to reach the point where
you think the bug occurs.

To use the checkpoint/restart method of debugging:

checkpoint
Save a snapshot of the debugged program’s current execution state. The
checkpoint command takes no arguments, but each checkpoint is assigned
a small integer id, similar to a breakpoint id.

info checkpoints
List the checkpoints that have been saved in the current debugging session. For
each checkpoint, the following information will be listed:

L' Currently, only GNU/Linux.

36 Debugging with GDB

Checkpoint ID
Process ID

Code Address

Source line, or label

restart checkpoint-id
Restore the program state that was saved as checkpoint number checkpoint-id.
All program variables, registers, stack frames etc. will be returned to the values
that they had when the checkpoint was saved. In essence, gdb will “wind back
the clock” to the point in time when the checkpoint was saved.

Note that breakpoints, GDB variables, command history etc. are not affected
by restoring a checkpoint. In general, a checkpoint only restores things that
reside in the program being debugged, not in the debugger.

delete checkpoint checkpoint-id
Delete the previously-saved checkpoint identified by checkpoint-id.

Returning to a previously saved checkpoint will restore the user state of the program
being debugged, plus a significant subset of the system (OS) state, including file pointers. It
won’t “un-write” data from a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten. For files opened in read mode, the
pointer will also be restored so that the previously read data can be read again.

Of course, characters that have been sent to a printer (or other external device) cannot
be “snatched back”, and characters received from eg. a serial device can be removed from
internal program buffers, but they cannot be “pushed back” into the serial pipeline, ready
to be received again. Similarly, the actual contents of files that have been changed cannot
be restored (at this time).

However, within those constraints, you actually can “rewind” your program to a previ-
ously saved point in time, and begin debugging it again — and you can change the course
of events so as to debug a different execution path this time.

Finally, there is one bit of internal program state that will be different when you return
to a checkpoint — the program’s process id. Each checkpoint will have a unique process id
(or pid), and each will be different from the program’s original pid. If your program has
saved a local copy of its process id, this could potentially pose a problem.

4.11.1 A Non-obvious Benefit of Using Checkpoints

On some systems such as GNU/Linux, address space randomization is performed on new
processes for security reasons. This makes it difficult or impossible to set a breakpoint, or
watchpoint, on an absolute address if you have to restart the program, since the absolute
location of a symbol will change from one execution to the next.

A checkpoint, however, is an identical copy of a process. Therefore if you create a
checkpoint at (eg.) the start of main, and simply return to that checkpoint instead of
restarting the process, you can avoid the effects of address randomization and your symbols
will all stay in the same place.

Chapter 5: Stopping and Continuing 37

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out
why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a break-
point, or reaching a new line after a GDB command such as step. You may then examine
and change variables, set new breakpoints or remove old ones, and then continue execu-
tion. Usually, the messages shown by GDB provide ample explanation of the status of your
program—but you can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, Watchpoints, and Catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. You can set breakpoints with the break command and its variants (see Section 5.1.1
[Setting Breakpoints], page 38), to specify the place where your program should stop by
line number, function name or exact address in the program.

On some systems, you can set breakpoints in shared libraries before the executable is
run. There is a minor limitation on HP-UX systems: you must wait until the executable
is run in order to set breakpoints in shared library routines that are not called directly by
the program (for example, routines that are arguments in a pthread_create call).

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. The expression may be a value of a variable, or it could involve values
of one or more variables combined by operators, such as ‘a + b’. This is sometimes called
data breakpoints. You must use a different command to set watchpoints (see Section 5.1.2
[Setting Watchpoints], page 43), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See Section 8.6 [Automatic Display|, page 81.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
Catchpoints|, page 45), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.3 [Signals|, page 56.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

38 Debugging with GDB

Some GDB commands accept a range of breakpoints on which to operate. A breakpoint
range is either a single breakpoint number, like ‘5’, or two such numbers, in increasing
order, separated by a hyphen, like ‘6-7". When a breakpoint range is given to a command,
all breakpoints in that range are operated on.

5.1.1 Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger convenience
variable ‘$bpnum’ records the number of the breakpoint you've set most recently; see Sec-
tion 8.9 [Convenience Variables|, page 88, for a discussion of what you can do with conve-
nience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using source languages
that permit overloading of symbols, such as C++, function may refer to more
than one possible place to break. See Section 5.1.8 [Breakpoint Menus|, page 51,
for a discussion of that situation.

break +offset

break -offset
Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected stack frame. (See Section 6.1
[Frames|, page 61, for a description of stack frames.)

break linenum
Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
program just before it executes any of the code on that line.

break filename :1linenum
Set a breakpoint at line linenum in source file filename.

break filename :function
Set a breakpoint at entry to function function found in file filename. Specifying
a file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *xaddress
Set a breakpoint at address address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source files.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 6 [Examining
the Stack], page 61). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an ar-
gument in the innermost frame, GDB stops the next time it reaches the current
location; this may be useful inside loops.

Chapter 5: Stopping and Continuing 39

GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
Conditions|, page 48, for more information on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See Sec-
tion 5.1.5 [Disabling Breakpoints], page 47.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break com-
mand and the breakpoint is set in the same way, but the breakpoint requires
hardware support and some target hardware may not have this support. The
main purpose of this is EPROM/ROM code debugging, so you can set a break-
point at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and most x86-based
targets. These targets will generate traps when a program accesses some data
or instruction address that is assigned to the debug registers. However the
hardware breakpoint registers can take a limited number of breakpoints. For
example, on the DSU, only two data breakpoints can be set at a time, and
GDB will reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (see Section 5.1.5 [Dis-
abling Breakpoints|, page 47). See Section 5.1.6 [Break Conditions|, page 48.
For remote targets, you can restrict the number of hardware breakpoints GDB
will use, see [set remote hardware-breakpoint-limit], page 175.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling Breakpoints|, page 47. See also
Section 5.1.6 [Break Conditions], page 48.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

40

Debugging with GDB

The syntax of the regular expression is the standard one used with tools like
‘grep’. Note that this is different from the syntax used by shells, so for instance
foo* matches all functions that include an fo followed by zero or more os. There
is an implicit .* leading and trailing the regular expression you supply, so to
match only functions that begin with foo, use “foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.
The rbreak command can be used to set breakpoints in all the functions in a
program, like this:

(gdb) rbreak .

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted. Optional argument n means print information only about the spec-
ified breakpoint (or watchpoint or catchpoint). For each breakpoint, following
columns are printed:

Breakpoint Numbers
Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled

Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled. An optional ‘(p)’ suffix marks pending break-
points — breakpoints for which address is either not yet resolved,
pending load of a shared library, or for which address was in a
shared library that was since unloaded. Such breakpoint won’t
fire until a shared library that has the symbol or line referred by
breakpoint is loaded. See below for details.

Address Where the breakpoint is in your program, as a memory address. For
a pending breakpoint whose address is not yet known, this field will
contain ‘<PENDING>’. A breakpoint with several locations will have
‘MULTIPLE>’ in this field — see below for details.

What Where the breakpoint is in the source for your program, as a file and
line number. For a pending breakpoint, the original string passed
to the breakpoint command will be listed as it cannot be resolved
until the appropriate shared library is loaded in the future.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that. A pending breakpoint is allowed to have a condition specified for it. The
condition is not parsed for validity until a shared library is loaded that allows
the pending breakpoint to resolve to a valid location.

Chapter 5: Stopping and Continuing 41

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 8.5
[Examining Memory]|, page 79).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break Conditions|, page 48).

It is possible that a breakpoint corresponds to several locations in your program. Ex-
amples of this situation are:

e For a C++ constructor, the GCC compiler generates several instances of the function
body, used in different cases.

e For a C++ template function, a given line in the function can correspond to any number
of instantiations.

e For an inlined function, a given source line can correspond to several places where that
function is inlined.

In all those cases, GDB will insert a breakpoint at all the relevant locations.

A breakpoint with multiple locations is displayed in the breakpoint table using several
rows — one header row, followed by one row for each breakpoint location. The header
row has ‘<MULTIPLE>’ in the address column. The rows for individual locations contain the
actual addresses for locations, and say what functions those locations are in. The number
column for a location has number in the format breakpoint-number.location-number.

For example:

Num Type Disp Enb Address What
1 breakpoint keep y <MULTIPLE>
stop only if i==
breakpoint already hit 1 time
y 0x080486a2 in void foo<int>() at t.cc:8

1.1
1.2 y 0x080486ca in void foo<double>() at t.cc:8

Fach location can be individually enabled or disabled by passing breakpoint-
number.location-number as argument to the enable and disable commands.

It’s quite common to have a breakpoint inside a shared library. The shared library may
be loaded and unloaded explicitly, and possibly repeatedly, as the program is executed.
To support this use case, GDB updates breakpoint locations whenever any shared library
is loaded or unloaded. Typically, you would set a breakpoint in a shared library at the
beginning of your debugging session, when the library is not loaded, and when the symbols
from the library are not available. When you try to set breakpoint, GDB will ask you if you
want to set a so called pending breakpoint — breakpoint whose address is not yet resolved.

After the program is run, whenever a new shared library is loaded, GDB reevaluates all the

breakpoints. When a newly loaded shared library contains the symbol or line referred to by
some pending breakpoint, that breakpoint is resolved and becomes an ordinary breakpoint.

42 Debugging with GDB

When a library is unloaded, all breakpoints that refer to its symbols or source lines become
pending again.

This logic works for breakpoints with multiple locations, too. For example, if you have
a breakpoint in a C++ template function, and a newly loaded shared library has an instan-
tiation of that template, a new location is added to the list of locations for the breakpoint.

Except for having unresolved address, pending breakpoints do not differ from regular
breakpoints. You can set conditions or commands, enable and disable them and perform
other breakpoint operations.

GDB provides some additional commands for controlling what happens when the ‘break’
command cannot resolve breakpoint address specification to an address:

set breakpoint pending auto
This is the default behavior. When GDB cannot find the breakpoint location,
it queries you whether a pending breakpoint should be created.

set breakpoint pending on
This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

set breakpoint pending off
This indicates that pending breakpoints are not to be created. Any unrecog-
nized breakpoint location results in an error. This setting does not affect any
pending breakpoints previously created.

show breakpoint pending
Show the current behavior setting for creating pending breakpoints.

The settings above only affect the break command and its variants. Once breakpoint is
set, it will be automatically updated as shared libraries are loaded and unloaded.

For some targets, GDB can automatically decide if hardware or software breakpoints
should be used, depending on whether the breakpoint address is read-only or read-write.
This applies to breakpoints set with the break command as well as to internal breakpoints
set by commands like next and finish. For breakpoints set with hbreak, GDB will always
use hardware breakpoints.

You can control this automatic behaviour with the following commands::

set breakpoint auto-hw on
This is the default behavior. When GDB sets a breakpoint, it will try to use the
target memory map to decide if software or hardware breakpoint must be used.

set breakpoint auto-hw off
This indicates GDB should not automatically select breakpoint type. If the
target provides a memory map, GDB will warn when trying to set software
breakpoint at a read-only address.

GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the GDB maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints|, page 327).

Chapter 5: Stopping and Continuing 43

5.1.2 Setting Watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen. (This is sometimes
called a data breakpoint.) The expression may be as simple as the value of a single variable,
or as complex as many variables combined by operators. Examples include:

e A reference to the value of a single variable.

e An address cast to an appropriate data type. For example, ‘*(int *)0x12345678" will
watch a 4-byte region at the specified address (assuming an int occupies 4 bytes).

e An arbitrarily complex expression, such as ‘a*b + c¢/d’. The expression can use any op-
erators valid in the program’s native language (see Chapter 12 [Languages|, page 119).

Depending on your system, watchpoints may be implemented in software or hardware.
GDB does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as HP-UX, GNU/Linux and most other x86-based targets, GDB
includes support for hardware watchpoints, which do not slow down the running of your
program.

watch expr
Set a watchpoint for an expression. GDB will break when the expression expr
is written into by the program and its value changes. The simplest (and the
most popular) use of this command is to watch the value of a single variable:
(gdb) watch foo

rwatch expr
Set a watchpoint that will break when the value of expr is read by the program.

awatch expr
Set a watchpoint that will break when expr is either read from or written into
by the program.

info watchpoints
This command prints a list of watchpoints, breakpoints, and catchpoints; it is
the same as info break (see Section 5.1.1 [Set Breaks|, page 38).

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If GDB cannot set a hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the instruction, after the
change occurs.

You can force GDB to use only software watchpoints with the set can-use-hw-
watchpoints 0 command. With this variable set to zero, GDB will never try to use
hardware watchpoints, even if the underlying system supports them. (Note that
hardware-assisted watchpoints that were set before setting can-use-hw-watchpoints to
zero will still use the hardware mechanism of watching expression values.)

set can-use-hw-watchpoints
Set whether or not to use hardware watchpoints.

44 Debugging with GDB

show can-use-hw-watchpoints
Show the current mode of using hardware watchpoints.

For remote targets, you can restrict the number of hardware watchpoints GDB will use,
see [set remote hardware-breakpoint-limit], page 175.

When you issue the watch command, GDB reports

Hardware watchpoint num: expr
if it was able to set a hardware watchpoint.

Currently, the awatch and rwatch commands can only set hardware watchpoints, be-
cause accesses to data that don’t change the value of the watched expression cannot be
detected without examining every instruction as it is being executed, and GDB does not do
that currently. If GDB finds that it is unable to set a hardware breakpoint with the awatch
or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, GDB cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision
floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, GDB might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, GDB might not be
able to warn you about this when you set the watchpoints, and the warning will be printed
only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint
If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also exhaust the re-
sources available for hardware-assisted watchpoints. That’s because GDB needs to watch
every variable in the expression with separately allocated resources.

The SPARClite DSU will generate traps when a program accesses some data or instruc-
tion address that is assigned to the debug registers. For the data addresses, DSU facilitates
the watch command. However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you can set two
watchpoints with watch commands, two with rwatch commands, or two with awatch com-
mands, but you cannot set one watchpoint with one command and the other with a different
command. GDB will reject the command if you try to mix watchpoints. Delete or disable
unused watchpoint commands before setting new ones.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until GDB reaches another kind of breakpoint or the call completes.

GDB automatically deletes watchpoints that watch local (automatic) variables, or expres-
sions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program
being debugged terminates, all local variables go out of scope, and so only watchpoints

Chapter 5: Stopping and Continuing 45

that watch global variables remain set. If you rerun the program, you will need to set all
such watchpoints again. One way of doing that would be to set a code breakpoint at the
entry to the main function and when it breaks, set all the watchpoints.

In multi-threaded programs, watchpoints will detect changes to the watched expression
from every thread.

Warning: In multi-threaded programs, software watchpoints have only limited
usefulness. If GDB creates a software watchpoint, it can only watch the value
of an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use software watch-
points as usual. However, GDB may not notice when a non-current thread’s
activity changes the expression. (Hardware watchpoints, in contrast, watch an
expression in all threads.)

See [set remote hardware-watchpoint-limit], page 175.

5.1.3 Setting Catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program events,
such as C++ exceptions or the loading of a shared library. Use the catch command to set
a catchpoint.

catch event
Stop when event occurs. event can be any of the following:

throw The throwing of a C++ exception.
catch The catching of a C++ exception.
exception

An Ada exception being raised. If an exception name is specified
at the end of the command (eg catch exception Program_Error),
the debugger will stop only when this specific exception is raised.
Otherwise, the debugger stops execution when any Ada exception
is raised.

exception unhandled
An exception that was raised but is not handled by the program.

assert A failed Ada assertion.

exec A call to exec. This is currently only available for HP-UX.
fork A call to fork. This is currently only available for HP-UX.
vfork A call to vfork. This is currently only available for HP-UX.
load

load libname
The dynamic loading of any shared library, or the loading of the
library libname. This is currently only available for HP-UX.

46 Debugging with GDB

unload

unload libname
The unloading of any dynamically loaded shared library, or the
unloading of the library libname. This is currently only available
for HP-UX.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.

There are currently some limitations to C++ exception handling (catch throw and catch
catch) in GDB:

e If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program either to
abort or to simply continue running until it hits a breakpoint, catches a signal that GDB
is listening for, or exits. This is the case even if you set a catchpoint for the exception;
catchpoints on exceptions are disabled within interactive calls.

e You cannot raise an exception interactively.
e You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place. If you set
a breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. */
void __raise_exception (void #**addr, void *id);
To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Section 5.1 [Breakpoints; Watchpoints; and Excep-
tions], page 37).

With a conditional breakpoint (see Section 5.1.6 [Break Conditions], page 48) that de-
pends on the value of id, you can stop your program when a specific exception is raised.
You can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

5.1.4 Deleting Breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done
its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

Chapter 5: Stopping and Continuing 47

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 6.3 [Selecting a Frame|, page 64). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear function
clear filename :function
Delete any breakpoints set at entry to the named function.

clear linenum

clear filename:linenum
Delete any breakpoints set at or within the code of the specified linenum of the
specified filename.

delete [breakpoints| [range. . .]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints (GDB
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

5.1.5 Disabling Breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break or info watch to print a list of breakpoints, watchpoints, and catchpoints
if you do not know which numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enable-
ment:

e Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

e Disabled. The breakpoint has no effect on your program.
e Enabled once. The breakpoint stops your program, but then becomes disabled.

e Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints| [range. . .]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

48 Debugging with GDB

enable [breakpoints| [range. . .]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints| once range. ..
Enable the specified breakpoints temporarily. GDB disables any of these break-
points immediately after stopping your program.

enable [breakpoints| delete range. ..
Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there. Breakpoints set by the
tbreak command start out in this state.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting Breakpoints],
page 38), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until
can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and Stepping|, page 52.)

5.1.6 Break Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression
in your programming language (see Section 8.1 [Expressions|, page 75). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘! assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop your program without checking the condition of
this one.) Note that breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a breakpoint is reached
(see Section 5.1.7 [Breakpoint Command Lists], page 49).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting Breakpoints|, page 38. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

Chapter 5: Stopping and Continuing 49

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, GDB checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No symbol "foo" in current context.

GDB does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 8.1 [Expressions|, page 75.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and Stepping], page 52.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 8.9 [Convenience Variables], page 88.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint Command Lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to print
the values of certain expressions, or enable other breakpoints.

50 Debugging with GDB

commands |bnum]|
. command-1ist ...
end Specify a list of commands for breakpoint number bnum. The commands them-
selves appear on the following lines. Type a line containing just end to terminate
the commands.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint, watchpoint,
or catchpoint set (not to the breakpoint most recently encountered).

Pressing as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 20.4 [Commands for Controlled
Output], page 220.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

break foo if x>0
commands

silent

printf "x is %d\n",x
cont

end

One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent

set x =y + 4
cont

end

Chapter 5: Stopping and Continuing 51

5.1.8 Breakpoint Menus

Some programming languages (notably C++ and Objective-C) permit a single function name
to be defined several times, for application in different contexts. This is called overloading.
When a function name is overloaded, ‘break function’ is not enough to tell GDB where
you want a breakpoint. If you realize this is a problem, you can use something like ‘break
function (types)’ to specify which particular version of the function you want. Otherwise,
GDB offers you a menu of numbered choices for different possible breakpoints, and waits for
your selection with the prompt ‘>’. The first two options are always ‘[0] cancel’ and ‘[1]
all’. Typing 1 sets a breakpoint at each definition of function, and typing 0 aborts the
break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String: :after. We choose three particular definitions of that function
name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[6] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

>246

Breakpoint 1 at Oxb26c: file String.cc, line 867.
Breakpoint 2 at Oxb344: file String.cc, line 875.
Breakpoint 3 at Oxafcc: file String.cc, line 846.
Multiple breakpoints were set.

Use the "delete" command to delete unwanted
breakpoints.

(gdb)

5.1.9 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a program if any other process
is running that program. In this situation, attempting to run or continue a program with
a breakpoint causes GDB to print an error message:
Cannot insert breakpoints.
The same program may be running in another process.
When this happens, you have three ways to proceed:
Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing your program to a new name. Resume GDB
and use the exec-file command to specify that GDB should run your program under
that name. Then start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option
‘~N’. The operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted
breakpoints and watchpoints:

Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.

52 Debugging with GDB

This message is printed when you attempt to resume the program, since only then GDB
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.1.10 “Breakpoint address adjusted...”

Some processor architectures place constraints on the addresses at which breakpoints may
be placed. For architectures thus constrained, GDB will attempt to adjust the breakpoint’s
address to comply with the constraints dictated by the architecture.

One example of such an architecture is the Fujitsu FR-V. The FR-V is a VLIW archi-
tecture in which a number of RISC-like instructions may be bundled together for parallel
execution. The FR-V architecture constrains the location of a breakpoint instruction within
such a bundle to the instruction with the lowest address. GDB honors this constraint by
adjusting a breakpoint’s address to the first in the bundle.

It is not uncommon for optimized code to have bundles which contain instructions from
different source statements, thus it may happen that a breakpoint’s address will be adjusted
from one source statement to another. Since this adjustment may significantly alter GDB’s
breakpoint related behavior from what the user expects, a warning is printed when the
breakpoint is first set and also when the breakpoint is hit.

A warning like the one below is printed when setting a breakpoint that’s been subject
to address adjustment:

warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

Such warnings are printed both for user settable and GDB’s internal breakpoints. If you
see one of these warnings, you should verify that a breakpoint set at the adjusted address
will have the desired affect. If not, the breakpoint in question may be removed and other
breakpoints may be set which will have the desired behavior. E.g., it may be sufficient to
place the breakpoint at a later instruction. A conditional breakpoint may also be useful in
some cases to prevent the breakpoint from triggering too often.

GDB will also issue a warning when stopping at one of these adjusted breakpoints:

warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.

When this warning is encountered, it may be too late to take remedial action except in
cases where the breakpoint is hit earlier or more frequently than expected.

5.2 Continuing and Stepping

Continuing means resuming program execution until your program completes normally. In
contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution. See Section 5.3 [Signals|, page 56.)

Chapter 5: Stopping and Continuing 53

continue [ignore-count|

c [ignore-count]

fg [ignore-count]
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
Conditions|, page 48).

The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

The synonyms ¢ and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 14.4 [Returning
from a Function], page 151) to go back to the calling function; or jump (see Section 14.2
[Continuing at a Different Address|, page 150) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
Watchpoints; and Catchpoints|, page 37) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to GDB. This command is abbreviated s.

Warning: If you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -gl on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

step count
Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

54

Debugging with GDB

next [count|

Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

set step-mode
set step—mode on

The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.

This is useful in cases where you may be interested in inspecting the machine

instructions of a function which has no symbolic info and do not want GDB to
automatically skip over this function.

set step-mode off

Causes the step command to step over any functions which contains no debug
information. This is the default.

show step-mode

finish

until

Show whether GDB will stop in or step over functions without source line debug
information.

Continue running until just after function in the selected stack frame returns.
Print the returned value (if any).

Contrast this with the return command (see Section 14.4 [Returning from a
Function|, page 151).

Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the £ (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

Chapter 5: Stopping and Continuing 55

(gdb) £

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input () ;

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—mnot in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location

u location

Continue running your program until either the specified location is reached,
or the current stack frame returns. location is any of the forms of argument
acceptable to break (see Section 5.1.1 [Setting Breakpoints|, page 38). This
form of the command uses breakpoints, and hence is quicker than until without
an argument. The specified location is actually reached only if it is in the
current frame. This implies that until can be used to skip over recursive
function invocations. For instance in the code below, if the current location is
line 96, issuing until 99 will execute the program up to line 99 in the same
invocation of factorial, i.e., after the inner invocations have returned.

94 int factorial (int value)

95 {

96 if (value > 1) {

97 value *= factorial (value - 1);
98 }

99 return (value);

100 }

advance location

stepi
stepi arg
si

Continue running the program up to the given location. An argument is re-
quired, which should be of the same form as arguments for the break command.
Execution will also stop upon exit from the current stack frame. This command
is similar to until, but advance will not skip over recursive function calls, and
the target location doesn’t have to be in the same frame as the current one.

Execute one machine instruction, then stop and return to the debugger.

It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed, each
time your program stops. See Section 8.6 [Automatic Display|, page 81.

An argument is a repeat count, as in step.

56 Debugging with GDB

nexti

nexti arg

ni Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often
Ctrl-c); SIGSEGV is the signal a program gets from referencing a place in memory far
away from all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which
happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SIGALRM be silently passed
to your program (so as not to interfere with their role in the program’s functioning) but to
stop your program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

info handle
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

info signals sig
Similar, but print information only about the specified signal number.

info handle is an alias for info signals.

handle signal |[keywords...]
Change the way GDB handles signal signal. signal can be the number of a
signal or its name (with or without the ‘SIG’ at the beginning); a list of signal
numbers of the form ‘low-high’; or the word ‘all’, meaning all the known
signals. Optional arguments keywords, described below, say what change to
make.

The keywords allowed by the handle command can be abbreviated. Their full names
are:

nostop GDB should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

Chapter 5: Stopping and Continuing 57

stop GDB should stop your program when this signal happens. This implies the
print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass

noignore GDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled. pass and
noignore are synonyms.

nopass
ignore GDB should not allow your program to see this signal. nopass and ignore are
synonyms.

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question
at that time. In other words, after GDB reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM,
SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 14.3
[Giving your Program a Signal], page 151.

5.4 Stopping and Starting Multi-thread Programs

When your program has multiple threads (see Section 4.9 [Debugging Programs with Mul-
tiple Threads|, page 31), you can choose whether to set breakpoints on all threads, or on a
particular thread.

break linespec thread threadno

break linespec thread threadno if ...
linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.

Use the qualifier ‘thread threadno’ with a breakpoint command to specify
that you only want GDB to stop the program when a particular thread reaches
this breakpoint. threadno is one of the numeric thread identifiers assigned by
GDB, shown in the first column of the ‘info threads’ display.

If you do not specify ‘thread threadno’ when you set a breakpoint, the break-
point applies to all threads of your program.
You can use the thread qualifier on conditional breakpoints as well; in this

case, place ‘thread threadno’ before the breakpoint condition, like this:
(gdb) break frik.c:13 thread 28 if bartab > lim

58 Debugging with GDB

Whenever your program stops under GDB for any reason, all threads of execution stop,
not just the current thread. This allows you to examine the overall state of the program,
including switching between threads, without worrying that things may change underfoot.

There is an unfortunate side effect. If one thread stops for a breakpoint, or for some
other reason, and another thread is blocked in a system call, then the system call may
return prematurely. This is a consequence of the interaction between multiple threads and
the signals that ¢DB uses to implement breakpoints and other events that stop execution.

To handle this problem, your program should check the return value of each system call
and react appropriately. This is good programming style anyways.

For example, do not write code like this:
sleep (10);

The call to sleep will return early if a different thread stops at a breakpoint or for some
other reason.

Instead, write this:
int unslept = 10;
while (unslept > 0)
unslept = sleep (unslept);
A system call is allowed to return early, so the system is still conforming to its specifica-
tion. But GDB does cause your multi-threaded program to behave differently than it would
without GDB.

Also, GDB uses internal breakpoints in the thread library to monitor certain events such
as thread creation and thread destruction. When such an event happens, a system call
in another thread may return prematurely, even though your program does not appear to
stop.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other threads
may execute more than one statement while the current thread completes a single step.
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a signal,
or an exception before the first thread completes whatever you requested.

On some OSes, you can lock the OS scheduler and thus allow only a single thread to
run.

set scheduler-locking mode
Set the scheduler locking mode. If it is off, then there is no locking and any
thread may run at any time. If on, then only the current thread may run when
the inferior is resumed. The step mode optimizes for single-stepping. It stops
other threads from “seizing the prompt” by preempting the current thread while
you are stepping. Other threads will only rarely (or never) get a chance to run
when you step. They are more likely to run when you ‘next’ over a function call,
and they are completely free to run when you use commands like ‘continue’,

Chapter 5: Stopping and Continuing 59

‘until’, or ‘finish’. However, unless another thread hits a breakpoint during
its timeslice, they will never steal the GDB prompt away from the thread that
you are debugging.

show scheduler-locking
Display the current scheduler locking mode.

60

Debugging with GDB

Chapter 6: Examining the Stack 61

6 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, information about the call is generated.
That information includes the location of the call in your program, the arguments of the
call, and the local variables of the function being called. The information is saved in a block
of data called a stack frame. The stack frames are allocated in a region of memory called
the call stack.

When your program stops, the GDB commands for examining the stack allow you to see
all of this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly
to the selected frame. In particular, whenever you ask GDB for the value of a variable in
your program, the value is found in the selected frame. There are special GDB commands to
select whichever frame you are interested in. See Section 6.3 [Selecting a Frame], page 64.

When your program stops, GDB automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Section 6.4 [Information about a
Frame], page 65).

6.1 Stack Frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short;
each frame is the data associated with one call to one function. The frame contains the
arguments given to the function, the function’s local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a
convention for choosing one byte whose address serves as the address of the frame. Usually
this address is kept in a register called the frame pointer register (see Section 8.10 [Registers],
page 90) while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward. These numbers do not really
exist in your program; they are assigned by GDB to give you a way of designating stack
frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the GCC option

‘-fomit-frame-pointer’
generates functions without a frame.) This is occasionally done with heavily used li-
brary functions to save the frame setup time. GDB has limited facilities for dealing with
these function invocations. If the innermost function invocation has no stack frame, GDB

62 Debugging with GDB

nevertheless regards it as though it had a separate frame, which is numbered zero as usual,
allowing correct tracing of the function call chain. However, GDB has no provision for
frameless functions elsewhere in the stack.

frame args
The frame command allows you to move from one stack frame to another, and
to print the stack frame you select. args may be either the address of the frame
or the stack frame number. Without an argument, frame prints the current
stack frame.

select-frame
The select-frame command allows you to move from one stack frame to an-
other without printing the frame. This is the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame zero), followed by its
caller (frame one), and on up the stack.

backtrace
bt Print a backtrace of the entire stack: one line per frame for all frames in the
stack.

You can stop the backtrace at any time by typing the system interrupt charac-
ter, normally Ctrl-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

backtrace full

bt full

bt full n

bt full -n
Print the values of the local variables also. n specifies the number of frames to
print, as described above.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

In a multi-threaded program, GDB by default shows the backtrace only for the current
thread. To display the backtrace for several or all of the threads, use the command thread
apply (see Section 4.9 [Threads|, page 31). For example, if you type thread apply all
backtrace, GDB will display the backtrace for all the threads; this is handy when you
debug a core dump of a multi-threaded program.

Each line in the backtrace shows the frame number and the function name. The program
counter value is also shown—unless you use set print address off. The backtrace also
shows the source file name and line number, as well as the arguments to the function. The
program counter value is omitted if it is at the beginning of the code for that line number.

Chapter 6: Examining the Stack 63

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows
the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that
your program has stopped at the beginning of the code for line 993 of builtin.c.

If your program was compiled with optimizations, some compilers will optimize away
arguments passed to functions if those arguments are never used after the call. Such opti-
mizations generate code that passes arguments through registers, but doesn’t store those
arguments in the stack frame. GDB has no way of displaying such arguments in stack frames
other than the innermost one. Here’s what such a backtrace might look like:

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The values of arguments that were not saved in their stack frames are shown as ‘<value
optimized out>’.

If you need to display the values of such optimized-out arguments, either deduce that
from other variables whose values depend on the one you are interested in, or recompile
without optimizations.

Most programs have a standard user entry point—a place where system libraries and
startup code transition into user code. For C this is main'. When GDB finds the entry
function in a backtrace it will terminate the backtrace, to avoid tracing into highly system-
specific (and generally uninteresting) code.

If you need to examine the startup code, or limit the number of levels in a backtrace,
you can change this behavior:

set backtrace past-main
set backtrace past-main on
Backtraces will continue past the user entry point.

set backtrace past-main off
Backtraces will stop when they encounter the user entry point. This is the
default.

show backtrace past-main
Display the current user entry point backtrace policy.

1 Note that embedded programs (the so-called “free-standing” environment) are not required to have a

main function as the entry point. They could even have multiple entry points.

64 Debugging with GDB

set backtrace past-entry

set backtrace past-entry on
Backtraces will continue past the internal entry point of an application. This
entry point is encoded by the linker when the application is built, and is likely
before the user entry point main (or equivalent) is called.

set backtrace past-entry off
Backtraces will stop when they encounter the internal entry point of an appli-
cation. This is the default.

show backtrace past-entry
Display the current internal entry point backtrace policy.

set backtrace limit n
set backtrace 1limit O
Limit the backtrace to n levels. A value of zero means unlimited.

show backtrace limit
Display the current limit on backtrace levels.

6.3 Selecting a Frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a stack frame;
all of them finish by printing a brief description of the stack frame just selected.

frame n

fn Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and so
on. The highest-numbered frame is the one for main.

frame addr

f addr Select the frame at address addr. This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your
program has multiple stacks and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer
and a program counter.

On the 29k architecture, it needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n Move n frames up the stack. For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
n defaults to one.

down n Move n frames down the stack. For positive numbers n, this advances toward
the innermost frame, to lower frame numbers, to frames that were created more
recently. n defaults to one. You may abbreviate down as do.

Chapter 6: Examining the Stack 65

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source file
and line number of execution in that frame. The second line shows the text of that source
line.

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10

10 read_input_file (argv[il);

After such a printout, the 1ist command with no arguments prints ten lines centered on
the point of execution in the frame. You can also edit the program at the point of execution
with your favorite editing program by typing edit. See Section 7.1 [Printing Source Lines],
page 67, for details.

up-silently n

down-silently n
These two commands are variants of up and down, respectively; they differ in
that they do their work silently, without causing display of the new frame. They
are intended primarily for use in GDB command scripts, where the output might
be unnecessary and distracting.

6.4 Information About a Frame

There are several other commands to print information about the selected stack frame.

frame

f When used without any argument, this command does not change which frame
is selected, but prints a brief description of the currently selected stack frame.
It can be abbreviated £. With an argument, this command is used to select a
stack frame. See Section 6.3 [Selecting a Frame|, page 64.

info frame
info f This command prints a verbose description of the selected stack frame, includ-
ing:
e the address of the frame
e the address of the next frame down (called by this frame)
e the address of the next frame up (caller of this frame)
e the language in which the source code corresponding to this frame is written
e the address of the frame’s arguments
e the address of the frame’s local variables

e the program counter saved in it (the address of execution in the caller
frame)

e which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

66 Debugging with GDB

info frame addr

info f addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command. This requires
the same kind of address (more than one for some architectures) that you specify
in the frame command. See Section 6.3 [Selecting a Frame|, page 64.

info args Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or frame commands); then type info
catch. See Section 5.1.3 [Setting Catchpoints]|, page 45.

Chapter 7: Examining Source Files 67

7 Examining Source Files

GDB can print parts of your program’s source, since the debugging information recorded in
the program tells GDB what source files were used to build it. When your program stops,
GDB spontaneously prints the line where it stopped. Likewise, when you select a stack frame
(see Section 6.3 [Selecting a Frame|, page 64), GDB prints the line where execution in that
frame has stopped. You can print other portions of source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs facilities
to view source; see Chapter 23 [Using GDB under GNU Emacs], page 231.

7.1 Printing Source Lines

To print lines from a source file, use the list command (abbreviated 1). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print.

Here are the forms of the 1list command most commonly used:

list linenum
Print lines centered around line number linenum in the current source file.

list function
Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a 1ist command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Chapter 6
[Examining the Stack]|, page 61), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the 1ist command.
You can change this using set listsize:

set listsize count
Make the 1ist command display count source lines (unless the 1ist argument
explicitly specifies some other number).

show listsize
Display the number of lines that 1ist prints.

Repeating a list command with discards the argument, so it is equivalent to
typing just 1list. This is more useful than listing the same lines again. An exception is
made for an argument of ‘-’; that argument is preserved in repetition so that each repetition
moves up in the source file.

In general, the 1ist command expects you to supply zero, one or two linespecs. Linespecs
specify source lines; there are several ways of writing them, but the effect is always to specify
some source line. Here is a complete description of the possible arguments for 1ist:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are linespecs.

68 Debugging with GDB

list ,last
Print lines ending with Ilast.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.
list - Print lines just before the lines last printed.
list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of linespec.

number Specifies line number of the current source file. When a 1ist command has
two linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a 1ist command that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename :number
Specifies line number in the source file filename.

function Specifies the line that begins the body of the function function. For example:
in C, this is the line with the open brace.

filename :function
Specifies the line of the open-brace that begins the body of the function function
in the file filename. You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

xaddress Specifies the line containing the program address address. address may be any
expression.

7.2 Editing Source Files

To edit the lines in a source file, use the edit command. The editing program of your
choice is invoked with the current line set to the active line in the program. Alternatively,
there are several ways to specify what part of the file you want to print if you want to see
other parts of the program.

Here are the forms of the edit command most commonly used:
edit Edit the current source file at the active line number in the program.

edit number
Edit the current source file with number as the active line number.

edit function
Edit the file containing function at the beginning of its definition.

edit filename :number
Specifies line number in the source file filename.

Chapter 7: Examining Source Files 69

edit filename :function
Specifies the line that begins the body of the function function in the file file-
name. You only need the file name with a function name to avoid ambiguity
when there are identically named functions in different source files.

edit *address
Specifies the line containing the program address address. address may be any
expression.

7.2.1 Choosing your Editor

You can customize GDB to use any editor you want!. By default, it is ‘/bin/ex’, but you
can change this by setting the environment variable EDITOR before using GDB. For example,
to configure GDB to use the vi editor, you could use these commands with the sh shell:

EDITOR=/usr/bin/vi
export EDITOR
gdb ...

or in the csh shell,

setenv EDITOR /usr/bin/vi
gdb ...

7.3 Searching Source Files

There are two commands for searching through the current source file for a regular expres-
sion.

forward-search regexp

search regexp
The command ‘forward-search regexp’ checks each line, starting with the
one following the last line listed, for a match for regexp. It lists the line that is
found. You can use the synonym ‘search regexp’ or abbreviate the command
name as fo.

reverse-search regexp
The command ‘reverse-search regexp’ checks each line, starting with the
one before the last line listed and going backward, for a match for regexp. It
lists the line that is found. You can abbreviate this command as rev.

7.4 Specifying Source Directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved
between the compilation and your debugging session. GDB has a list of directories to search
for source files; this is called the source path. Each time GDB wants a source file, it tries all
the directories in the list, in the order they are present in the list, until it finds a file with
the desired name.

For example, suppose an executable references the file ‘/usr/src/foo-1.0/1ib/foo.c’,
and our source path is ‘/mnt/cross’. The file is first looked up literally; if this fails,

L' The only restriction is that your editor (say ex), recognizes the following command-line syntax:

ex +number file

The optional numeric value +number specifies the number of the line in the file where to start editing.

70 Debugging with GDB

‘/mnt/cross/usr/src/foo-1.0/1lib/foo.c’ is tried; if this fails, ‘/mnt/cross/foo.c’ is
opened; if this fails, an error message is printed. GDB does not look up the parts of the source
file name, such as ‘/mnt/cross/src/foo-1.0/1lib/foo.c’. Likewise, the subdirectories of
the source path are not searched: if the source path is ‘/mnt/cross’, and the binary refers
to ‘foo.c’, GDB would not find it under ‘/mnt/cross/usr/src/foo-1.0/1ib’.

Plain file names, relative file names with leading directories, file names containing dots,
etc. are all treated as described above; for instance, if the source path is ‘/mnt/cross’, and
the source file is recorded as ‘../1ib/foo.c’, GDB would first try ‘../1ib/foo.c’, then
‘/mnt/cross/../lib/foo.c’, and after that—‘/mnt/cross/foo.c’.

Note that the executable search path is not used to locate the source files.

Whenever you reset or rearrange the source path, GDB clears out any information it has
cached about where source files are found and where each line is in the file.

When you start GDB, its source path includes only ‘cdir’ and ‘cwd’, in that order. To
add other directories, use the directory command.

The search path is used to find both program source files and GDB script files (read using
the ‘~command’ option and ‘source’ command).

In addition to the source path, GDB provides a set of commands that manage a list of
source path substitution rules. A substitution rule specifies how to rewrite source directories
stored in the program’s debug information in case the sources were moved to a different
directory between compilation and debugging. A rule is made of two strings, the first
specifying what needs to be rewritten in the path, and the second specifying how it should
be rewritten. In [set substitute-path], page 71, we name these two parts from and to
respectively. GDB does a simple string replacement of from with to at the start of the
directory part of the source file name, and uses that result instead of the original file name
to look up the sources.

Using the previous example, suppose the ‘foo-1.0" tree has been moved from ‘/usr/src’
to ‘/mnt/cross’, then you can tell GDB to replace ‘/usr/src’ in all source path names with
‘/mnt/cross’. The first lookup will then be ‘/mnt/cross/foo-1.0/1ib/foo.c’ in place of
the original location of ‘/usr/src/foo-1.0/1ib/foo.c’. To define a source path substitu-
tion rule, use the set substitute-path command (see [set substitute-path], page 71).

To avoid unexpected substitution results, a rule is applied only if the from part
of the directory name ends at a directory separator. For instance, a rule substituting
‘/usr/source’ into ‘/mnt/cross’ will be applied to ‘/usr/source/foo-1.0" but not
to ‘/usr/sourceware/foo-2.0". And because the substitution is applied only at the
beginning of the directory name, this rule will not be applied to ‘/root/usr/source/baz.c’
either.

In many cases, you can achieve the same result using the directory command. However,
set substitute-path can be more efficient in the case where the sources are organized in
a complex tree with multiple subdirectories. With the directory command, you need to
add each subdirectory of your project. If you moved the entire tree while preserving its
internal organization, then set substitute-path allows you to direct the debugger to all
the sources with one single command.

set substitute-path is also more than just a shortcut command. The source path
is only used if the file at the original location no longer exists. On the other hand, set
substitute-path modifies the debugger behavior to look at the rewritten location instead.

Chapter 7: Examining Source Files 71

So, if for any reason a source file that is not relevant to your executable is located at the
original location, a substitution rule is the only method available to point GDB at the new
location.

directory dirname ...

dir dirname ...
Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;” on MS-DOS and MS-
Windows, where ‘:’ usually appears as part of absolute file names) or white-
space. You may specify a directory that is already in the source path; this

moves it forward, so GDB searches it sooner.

You can use the string ‘$cdir’ to refer to the compilation directory (if one is
recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is not
the same as ‘.’—the former tracks the current working directory as it changes
during your GDB session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

directory
Reset the source path to its default value (‘$cdir:$cwd’ on Unix systems). This
requires confirmation.

show directories
Print the source path: show which directories it contains.

set substitute-path from to
Define a source path substitution rule, and add it at the end of the current list
of existing substitution rules. If a rule with the same from was already defined,
then the old rule is also deleted.

For example, if the file ‘/foo/bar/baz.c’ was moved to ‘/mnt/cross/baz.c’,
then the command

(gdb) set substitute-path /usr/src /mnt/cross
will tell GDB to replace ‘/usr/src’ with ‘/mnt/cross’, which will allow GDB to
find the file ‘baz.c’ even though it was moved.
In the case when more than one substitution rule have been defined, the rules
are evaluated one by one in the order where they have been defined. The first
one matching, if any, is selected to perform the substitution.
For instance, if we had entered the following commands:

(gdb) set substitute-path /usr/src/include /mnt/include
(gdb) set substitute-path /usr/src /mnt/src

GDB would then rewrite ‘/usr/src/include/defs.h’ into ‘/mnt/include/defs.

by using the first rule. However, it would use the second rule to rewrite
‘/usr/src/lib/foo.c’ into ‘/mnt/src/lib/foo.c’.

unset substitute-path [path]
If a path is specified, search the current list of substitution rules for a rule that
would rewrite that path. Delete that rule if found. A warning is emitted by
the debugger if no rule could be found.

If no path is specified, then all substitution rules are deleted.

72 Debugging with GDB

show substitute-path [path]
If a path is specified, then print the source path substitution rule which would
rewrite that path, if any.

If no path is specified, then print all existing source path substitution rules.

If your source path is cluttered with directories that are no longer of interest, GDB may
sometimes cause confusion by finding the wrong versions of source. You can correct the
situation as follows:

1. Use directory with no argument to reset the source path to its default value.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

7.5 Source and Machine Code

You can use the command info line to map source lines to program addresses (and vice
versa), and the command disassemble to display a range of addresses as machine instruc-
tions. When run under GNU Emacs mode, the info 1ine command causes the arrow to
point to the line specified. Also, info line prints addresses in symbolic form as well as
hex.

info line linespec
Print the starting and ending addresses of the compiled code for source line
linespec. You can specify source lines in any of the ways understood by the
list command (see Section 7.1 [Printing Source Lines|, page 67).

For example, we can use info line to discover the location of the object code for the
first line of function m4_changequote:

(gdb) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a par-
ticular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 8.5 [Examining Memory], page 79). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9 [Convenience Variables|, page 88).

disassemble
This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of
the selected frame. A single argument to this command is a program counter
value; GDB dumps the function surrounding this value. Two arguments specify
a range of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:
(gdb) disas 0x32c4 0x32e4

Dump of assembler code from 0x32c4 to 0x32e4:
0x32c4 <main+204>: addil 0,dp

Chapter 7: Examining Source Files 73

0x32c8 <main+208>: 1dw 0x22c(sr0,rl),r26
0x32cc <main+212>: 1dil 0x3000,r31
0x32d0 <main+216>: ble 0x3f8(sr4,r31)
0x32d4 <main+220>: ldo 0(r31),rp

0x32d8 <main+224>: addil -0x800,dp
0x32dc <main+228>: ldo 0x588(rl),r26
0x32e0 <main+232>: 1dil 0x3000,r31

End of assembler dump.

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

For programs that were dynamically linked and use shared libraries, instructions that
call functions or branch to locations in the shared libraries might show a seemingly bogus
location—it’s actually a location of the relocation table. On some architectures, GDB might
be able to resolve these to actual function names.

set disassembly-flavor instruction-set
Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

show disassembly-flavor
Show the current setting of the disassembly flavor.

74

Debugging with GDB

Chapter 8: Examining Data 75

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated
p), or its synonym inspect. It evaluates and prints the value of an expression of the
language your program is written in (see Chapter 12 [Using GDB with Different Languages],
page 119).

print expr

print /f expr
expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f’, where f is a letter specifying the format; see Section 8.4
[Output Formats|, page 78.

print

print /f If you omit expr, GDB displays the last value again (from the value history; see
Section 8.8 [Value History], page 88). This allows you to conveniently inspect
the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See Section 8.5 [Examining
Memory]|, page 79.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 13
[Examining the Symbol Table|, page 143.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using
is valid in an expression in GDB. This includes conditional expressions, function calls, casts,
and string constants. It also includes preprocessor macros, if you compiled your program
to include this information; see Section 4.1 [Compilation], page 25.

GDB supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to build up an array
in memory that is malloced in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 12 [Using GDB with Different Languages|, page 119, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@ ‘@’ is a binary operator for treating parts of memory as arrays. See Section 8.3
[Artificial Arrays|, page 77, for more information.

76 Debugging with GDB

‘::7 allows you to specify a variable in terms of the file or function where it is
defined. See Section 8.2 [Program Variables|, page 76.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr.

8.2 Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3
[Selecting a Frame], page 64); they must be either:

e global (or file-static)

or

e visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function

foo (a)
int a;
{
bar (a);
{
int b = test ();
bar (b);
}
}
you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing

inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can specify
a static variable in a particular function or file, using the colon-colon (: :) notation:

file::variable

function::variable
Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word—for
example, to print a global value of x defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::7 is very rarely in conflict with the very similar use of the same notation

in C++. GDB also supports use of the C++ scope resolution operator in GDB expressions.
Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function—just after entry to a new scope, and just before
exit.

Chapter 8: Examining Data 7

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, GDB
might not be able to display values for such local variables. If that happens, GDB will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. For example, Gcc, the GNU
C/C++ compiler, usually supports the ‘-gstabs+’ option. ‘-gstabs+’ produces debug info
in a format that is superior to formats such as COFF. You may be able to use DWARF
2 (‘-gdwarf-2’), which is also an effective form for debug info. See section “Options for
Debugging Your Program or GCC” in Using the GNU Compiler Collection (GCC). See
Section 12.4.1 [C and C++], page 123, for more information about debug info formats that
are best suited to C++ programs.

If you ask to print an object whose contents are unknown to GDB, e.g., because its
data type is not completely specified by the debug information, GDB will say ‘<incomplete
type>’. See Chapter 13 [Symbols], page 143, for more about this.

Strings are identified as arrays of char values without specified signedness. Arrays of
either signed char or unsigned char get printed as arrays of 1 byte sized integers. -
fsigned-char or ~-funsigned-char GCC options have no effect as GDB defines literal string
type "char" as char without a sign. For program code

char varO[] = "A";
signed char vari[] = "A";

You get during debugging

(gdb) print var0

$1 = "A"

(gdb) print varl

$2 = {65 ’A’, 0 ’\0’}

8.3 Artificial Arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of

78 Debugging with GDB

memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));
you can print the contents of array with

p *array@len

The left operand of ‘@ must reside in memory. Array values made with ‘@’ in this way

behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 8.8 [Value History], page 88), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in ‘(type [1) value’) GDB calcu-

lates the size to fill the value (as ‘sizeof (value)/sizeof (type)’:
(gdb) p/x (short[]1)0x12345678
$2 = {0x1234, 0x5678%}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9 [Convenience Variables], page 88)
as a counter in an expression that prints the first interesting value, and then repeat that
expression via (RET). For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $1 = 0
p dtab[$i++]->fv

8.4 Output Formats

By default, GDB prints a value according to its data type. Sometimes this is not what you
want. For example, you might want to print a number in hex, or a pointer in decimal. Or
you might want to view data in memory at a certain address as a character string or as an
instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

X Regard the bits of the value as an integer, and print the integer in hexadecimal.
d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

) Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.!

1 4y cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 8.5 [Examining Memory]|, page 79.

Chapter 8: Examining Data 79

Print as an address, both absolute in hexadecimal and as an offset from the
nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

(gdb) p/a 0x54320

$3 = 0x54320 <_initialize_vx+396>
The command info symbol 0x54320 yields similar results. See Chapter 13
[Symbols], page 143.

Regard as an integer and print it as a character constant. This prints both the
numerical value and its character representation. The character representation
is replaced with the octal escape ‘\nnn’ for characters outside the 7-bit ASCII
range.

Without this format, GDB displays char, unsigned char, and signed char
data as character constants. Single-byte members of vectors are displayed as
integer data.

Regard the bits of the value as a floating point number and print using typical
floating point syntax.

Regard as a string, if possible. With this format, pointers to single-byte data are
displayed as null-terminated strings and arrays of single-byte data are displayed
as fixed-length strings. Other values are displayed in their natural types.

Without this format, GDB displays pointers to and arrays of char,
unsigned char, and signed char as strings. Single-byte members of a vector
are displayed as an integer array.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 90),

type
p/x $p

C

Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

8.5 Examining Memory

You can use

the command x (for “examine”) to examine memory in any of several formats,

independently of your program’s data types.

x/nfu addr
X addr
X

n, f, and
to format it

Use the x command to examine memory.

u are all optional parameters that specify how much memory to display and how
; addr is an expression giving the address where you want to start displaying

memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

80 Debugging with GDB

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print (‘x’, ‘d’, ‘v, ‘0’, ‘t’,
‘a’, ‘c’, ‘f7, ‘s’), and in addition ‘i’ (for machine instructions). The default is
‘x” (hexadecimal) initially. The default changes each time you use either x or
print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

W Words (four bytes). This is the initial default.
g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the ‘s’ and ‘i’ formats, the unit size is ignored and
is normally not written.)

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always inter-
preted as an integer address of a byte of memory. See Section 8.1 [Expressions],
page 75, for more information on expressions. The default for addr is usu-
ally just after the last address examined—but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint
listed), info line (to the starting address of a line), and print (if you use it
to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 8.10
[Registers|, page 90) in hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘3i’ specifies that you want to see three machine instructions,
including any operands. For convenience, especially when used with the display command,
the ‘i’ format also prints branch delay slot instructions, if any, beyond the count specified,
which immediately follow the last instruction that is within the count. The command
disassemble gives an alternative way of inspecting machine instructions; see Section 7.5
[Source and Machine Code], page 72.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have

Chapter 8: Examining Data 81

inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

When you are debugging a program running on a remote target machine (see Chapter 17
[Remote Debugging], page 171), you may wish to verify the program’s image in the remote
machine’s memory against the executable file you downloaded to the target. The compare-
sections command is provided for such situations.

compare-sections [section-name]
Compare the data of a loadable section section-name in the executable file
of the program being debugged with the same section in the remote machine’s
memory, and report any mismatches. With no arguments, compares all loadable
sections. This command’s availability depends on the target’s support for the
"qCRC" remote request.

8.6 Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB prints its
value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending your format specification—it
uses x if you specify either the ‘i’ or ‘s’ format, or a unit size; otherwise it uses print.

display expr
Add the expression expr to the list of expressions to display each time your
program stops. See Section 8.1 [Expressions|, page 75.

display does not repeat if you press again after using it.

display/fmt expr
For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 8.4 [Output Formats|, page 78.

82 Debugging with GDB

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 8.5 [Examining
Memory]|, page 79.

For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 8.10 [Registers], page 90).

undisplay dnums. ..
delete display dnums. ..
Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press after using it. (Otherwise you
would just get the error ‘No display number ...".)

disable display dnums. ..
Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums. ..
Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
your program stops.

info display
Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which
would not be displayed right now because they refer to automatic variables not
currently available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution enters
a context where one of its variables is not defined. For example, if you give the command
display last_char while inside a function with an argument last_char, GDB displays
this argument while your program continues to stop inside that function. When it stops
elsewhere—where there is no variable last_char—the display is disabled automatically.
The next time your program stops where last_char is meaningful, you can enable the
display expression once again.

8.7 Print Settings

GDB provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address

set print address on
GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the

Chapter 8: Examining Data 83

contents of those addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:

(gdb) £

#0 set_quotes (1q;0x34c78 "<<", rq=0x34c88 ">y
at input.c:530

530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For example, this is the

same stack frame displayed with set print address off:
(gdb) set print addr off

(gdb) £
#0 set_quotes (1g="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine dependent dis-
plays from the GDB interface. For example, with print address off, you
should get the same text for backtraces on all machines—whether or not they
involve pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus
an offset. If that symbol does not uniquely identify the address (for example, it is a name
whose scope is a single source file), you may need to clarify. One way to do this is with info
line, for example ‘info line *0x4537’. Alternately, you can set GDB to print the source
file and line number when it prints a symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code; GDB shows you the line number and source file that corresponds to each
instruction.

Also, you may wish to see the symbolic form only if the address being printed is reason-
ably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell ¢DB to only display the symbolic form of an address if the offset between
the closest earlier symbol and the address is less than max-offset. The default
is 0, which tells GDB to always print the symbolic form of an address if any
symbol precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

84 Debugging with GDB

If you have a pointer and you are not sure where it points, try ‘set print
symbol-filename on’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer’. This interprets the address in symbolic
form. For example, here GDB shows that a variable ptt points at another variable t,
defined in ‘hi2.c’:

(gdb) set print symbol-filename on

(gdb) p/a ptt

$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does not show the
symbol name and filename of the referent, even with the appropriate set print
options turned on.

Other settings control how different kinds of objects are printed:

set print array

set print array on
Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

set print array-indexes

set print array-indexes on
Print the index of each element when displaying arrays. May be more convenient
to locate a given element in the array or quickly find the index of a given element
in that printed array. The default is off.

set print array-indexes off
Stop printing element indexes when displaying arrays.

show print array-indexes
Show whether the index of each element is printed when displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print. If GDB is printing
a large array, it stops printing after it has printed the number of elements set
by the set print elements command. This limit also applies to the display of
strings. When GDB starts, this limit is set to 200. Setting number-of-elements
to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print. If the
number is 0, then the printing is unlimited.

set print repeats
Set the threshold for suppressing display of repeated array elements. When
the number of consecutive identical elements of an array exceeds the threshold,
GDB prints the string "<repeats n times>", where n is the number of identical
repetitions, instead of displaying the identical elements themselves. Setting the

Chapter 8: Examining Data 85

threshold to zero will cause all elements to be individually printed. The default
threshold is 10.

show print repeats
Display the current threshold for printing repeated identical elements.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL
is encountered. This is useful when large arrays actually contain only short
strings. The default is off.

show print null-stop
Show whether GDB stops printing an array on the first NULL character.

set print pretty on
Cause GDB to print structures in an indented format with one member per line,

like this:
$1 = {
next = 0x0,
flags = {
sweet = 1,
sour = 1
},
meat = 0x54 "Pork"
}

set print pretty off
Cause GDB to print structures in a compact format, like this:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation \nnn.
This setting is best if you are working in English (Asci1) and you use the high-
order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international char-
acter sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell GDB to print unions which are contained in structures and other unions.
This is the default setting.

set print union off
Tell GDB not to print unions which are contained in structures and other unions.
GDB will print "{...}" instead.

86 Debugging with GDB

show print union
Ask GDB whether or not it will print unions which are contained in structures
and other unions.

For example, given the declarations

typedef enum {Tree, Bugl} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_forms;

struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;
} form;

};

struct thing foo = {Tree, {Acorn}};
with set print union on in effect ‘p foo’ would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}
and with set print union off in effect it would print

$1 = {it = Tree, form = {...}}

set print union affects programs written in C-like languages and in Pascal.
These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or de-
mangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names. The choices for style are currently:

auto Allow GDB to choose a decoding style by inspecting your program.

gnu Decode based on the GNU C++ compiler (g++) encoding algorithm.
This is the default.

hp Decode based on the HP ANSI C++ (aCC) encoding algorithm.

Chapter 8: Examining Data 87

lucid Decode based on the Lucid C++ compiler (1cc) encoding algorithm.

arm Decode using the algorithm in the C++ Annotated Reference Man-
ual. Warning: this setting alone is not sufficient to allow debugging
cfront-generated executables. GDB would require further enhance-
ment to permit that.

If you omit style, you will see a list of possible formats.

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on
When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off
Display only the declared type of objects, without reference to the virtual func-
tion table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print static-members
set print static-members on
Print static members when displaying a C++ object. The default is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed or not.

set print pascal_static-members
set print pascal_static-members on
Print static members when displaying a Pascal object. The default is on.

set print pascal_static-members off
Do not print static members when displaying a Pascal object.

show print pascal_static-members
Show whether Pascal static members are printed or not.

set print vtbl

set print vtbl on
Pretty print C++ virtual function tables. The default is off. (The vtbl com-
mands do not work on programs compiled with the HP ANSI C++ compiler
(aCC).)

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

88 Debugging with GDB

8.8 Value History

Values printed by the print command are saved in the GDB value history. This allows you
to refer to them in other expressions. Values are kept until the symbol table is re-read or
discarded (for example with the file or symbol-file commands). When the symbol table
changes, the value history is discarded, since the values may contain pointers back to the
types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are successive integers starting with one. print shows you the history number assigned to
a value by printing ‘$num =’ before the value; here num is the history number.

To refer to any previous value, use ‘¢’ followed by the value’s history number. The way
print labels its output is designed to remind you of this. Just $ refers to the most recent
value in the history, and $$ refers to the value before that. $$n refers to the nth value from
the end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to
$.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points to the next one, you

can print the contents of the next one with this:
p *$.next

You can print successive links in the chain by repeating this command—which you can do
by just typing ®RET).
Note that the history records values, not expressions. If the value of x is 4 and you type

these commands:

print x

set x=5
then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers. This is
like ‘p $$9’ repeated ten times, except that show values does not change the
history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Pressing to repeat show values n has exactly the same effect as ‘show values +’.

8.9 Convenience Variables

GDB provides convenience variables that you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB; they are not part of your

Chapter 8: Examining Data 89

program, and setting a convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘¢’ can be used for
a convenience variable, unless it is one of the predefined machine-specific register names
(see Section 8.10 [Registers], page 90). (Value history references, in contrast, are numbers
preceded by ‘¢’. See Section 8.8 [Value History], page 88.)

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:
set $foo = *object_ptr
would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, including structures and arrays, even if that variable already has a value of
a different type. The convenience variable, when used as an expression, has the type of its
current value.

show convenience
Print a list of convenience variables used so far, and their values. Abbreviated
show conv.

init-if-undefined $variable = expression
Set a convenience variable if it has not already been set. This is useful for
user-defined commands that keep some state. It is similar, in concept, to using
local static variables with initializers in C (except that convenience variables
are global). It can also be used to allow users to override default values used in
a command script.

If the variable is already defined then the expression is not evaluated so any
side-effects do not occur.

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For example, to print a field from successive elements of an array
of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing RET).

Some convenience variables are created automatically by GDB and given values likely to
be useful.

$_ The variable $_ is automatically set by the x command to the last address
examined (see Section 8.5 [Examining Memory], page 79). Other commands
which provide a default address for x to examine also set $_ to that address;
these commands include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it is a pointer to the
type of $__.

$__ The variable $__ is automatically set by the x command to the value found in

the last address examined. Its type is chosen to match the format in which the
data was printed.

90 Debugging with GDB

$_exitcode
The variable $_exitcode is automatically set to the exit code when the program
being debugged terminates.

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names starting
with ‘$¢’. The names of registers are different for each machine; use info registers to see
the names used on your machine.

info registers
Print the names and values of all registers except floating-point and vector
registers (in the selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point and vector
registers (in the selected stack frame).

info registers regname ...
Print the relativized value of each specified register regname. As discussed in
detail below, register values are normally relative to the selected stack frame.
regname may be any register name valid on the machine you are using, with or
without the initial ‘$’.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics for
registers. The register names $pc and $sp are used for the program counter register and
the stack pointer. $fp is used for a register that contains a pointer to the current stack
frame, and $ps is used for a register that contains the processor status. For example, you
could print the program counter in hex with
p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer? with
set $sp += 4

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no conflict.
The info registers command shows the canonical names. For example, on the SPARC,
info registers displays the processor status register as $psr but you can also refer to it
as $ps; and on x86-based machines $ps is an alias for the EFLAGS register.

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use return; see Section 14.4 [Returning from a Function], page 151.

Chapter 8: Examining Data 91

GDB always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value (although you can
print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system is not the same
one that your program normally sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C programs expect to work
with “double” (virtual) format. In such cases, GDB normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Some machines have special registers whose contents can be interpreted in several differ-
ent ways. For example, modern x86-based machines have SSE and MMX registers that can
hold several values packed together in several different formats. GDB refers to such registers
in struct notation:

(gdb) print $xmmi

$1 ={
v4_float = {0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044},
v2_double = {9.92129282474342e-303, 2.7585945287983262e-313},

v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
v8_int16 = {0, 0, 14072, 315, 11, 0, 13, 0},

v4_int32 = {0, 20657912, 11, 13},

v2_int64 = {88725056443645952, 55834574859},

uint128 = 0x0000000d40000000b013b36£800000000
}

To set values of such registers, you need to tell GDB which view of the register you wish to
change, as if you were assigning value to a struct member:

(gdb) set $xmml.uint128 = 0x000000000000000000000000FFFFFFFF

Normally, register values are relative to the selected stack frame (see Section 6.3 [Select-
ing a Frame|, page 64). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to see
the true contents of hardware registers, you must select the innermost frame (with ‘frame
0).

However, GDB must deduce where registers are saved, from the machine code generated
by your compiler. If some registers are not saved, or if GDB is unable to locate the saved
registers, the selected stack frame makes no difference.

8.11 Floating Point Hardware

Depending on the configuration, GDB may be able to give you more information about the
status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip. Currently,
‘info float’ is supported on the ARM and x86 machines.

92 Debugging with GDB

8.12 Vector Unit

Depending on the configuration, GDB may be able to give you more information about the
status of the vector unit.

info vector
Display information about the vector unit. The exact contents and layout vary
depending on the hardware.

8.13 Operating System Auxiliary Information

GDB provides interfaces to useful OS facilities that can help you debug your program.

When GDB runs on a Posix system (such as GNU or Unix machines), it interfaces with the
inferior via the ptrace system call. The operating system creates a special sata structure,
called struct user, for this interface. You can use the command info udot to display the
contents of this data structure.

info udot Display the contents of the struct user maintained by the OS kernel for the
program being debugged. GDB displays the contents of struct user as a list
of hex numbers, similar to the examine command.

Some operating systems supply an auxiliary vector to programs at startup. This is akin
to the arguments and environment that you specify for a program, but contains a system-
dependent variety of binary values that tell system libraries important details about the
hardware, operating system, and process. Each value’s purpose is identified by an inte-
ger tag; the meanings are well-known but system-specific. Depending on the configuration
and operating system facilities, GDB may be able to show you this information. For re-
mote targets, this functionality may further depend on the remote stub’s support of the
‘gXfer:auxv:read’ packet, see [qXfer auxiliary vector read|, page 349.

info auxv Display the auxiliary vector of the inferior, which can be either a live process
or a core dump file. GDB prints each tag value numerically, and also shows
names and text descriptions for recognized tags. Some values in the vector are
numbers, some bit masks, and some pointers to strings or other data. GDB
displays each value in the most appropriate form for a recognized tag, and in
hexadecimal for an unrecognized tag.

8.14 Memory Region Attributes

Memory region attributes allow you to describe special handling required by regions of
your target’s memory. GDB uses attributes to determine whether to allow certain types
of memory accesses; whether to use specific width accesses; and whether to cache target
memory. By default the description of memory regions is fetched from the target (if the
current target supports this), but the user can override the fetched regions.

Defined memory regions can be individually enabled and disabled. When a memory
region is disabled, GDB uses the default attributes when accessing memory in that region.
Similarly, if no memory regions have been defined, GDB uses the default attributes when
accessing all memory.

When a memory region is defined, it is given a number to identify it; to enable, disable,
or remove a memory region, you specify that number.

Chapter 8: Examining Data 93

mem lower upper attributes...
Define a memory region bounded by Ilower and upper with attributes
attributes. . ., and add it to the list of regions monitored by GDB. Note that
upper == (is a special case: it is treated as the target’s maximum memory
address. (OxfHff on 16 bit targets, OxfHHf on 32 bit targets, etc.)

mem auto Discard any user changes to the memory regions and use target-supplied regions,
if available, or no regions if the target does not support.

delete mem nums. ..
Remove memory regions nums. .. from the list of regions monitored by GDB.

disable mem nums. ..
Disable monitoring of memory regions nums. ... A disabled memory region is
not forgotten. It may be enabled again later.

enable mem nums. ..
Enable monitoring of memory regions nums. . ..

info mem Print a table of all defined memory regions, with the following columns for each
region:

Memory Region Number

Enabled or Disabled.
Enabled memory regions are marked with ‘y’. Disabled memory
regions are marked with ‘n’.

Lo Address
The address defining the inclusive lower bound of the memory re-
gion.

Hi Address
The address defining the exclusive upper bound of the memory
region.

Attributes The list of attributes set for this memory region.
8.14.1 Attributes
8.14.1.1 Memory Access Mode

The access mode attributes set whether GDB may make read or write accesses to a memory
region.

While these attributes prevent GDB from performing invalid memory accesses, they do
nothing to prevent the target system, I/O DMA, etc. from accessing memory.

ro Memory is read only.
WO Memory is write only.

e Memory is read/write. This is the default.

94 Debugging with GDB

8.14.1.2 Memory Access Size

The access size attribute tells GDB to use specific sized accesses in the memory region. Often
memory mapped device registers require specific sized accesses. If no access size attribute
is specified, GDB may use accesses of any size.

8 Use 8 bit memory accesses.

16 Use 16 bit memory accesses.
32 Use 32 bit memory accesses.
64 Use 64 bit memory accesses.

8.14.1.3 Data Cache

The data cache attributes set whether GDB will cache target memory. While this generally
improves performance by reducing debug protocol overhead, it can lead to incorrect results
because GDB does not know about volatile variables or memory mapped device registers.

cache Enable GDB to cache target memory.

nocache Disable GDB from caching target memory. This is the default.

8.14.2 Memory Access Checking

GDB can be instructed to refuse accesses to memory that is not explicitly described. This
can be useful if accessing such regions has undesired effects for a specific target, or to provide
better error checking. The following commands control this behaviour.

set mem inaccessible-by-default [on|off]
If on is specified, make GDB treat memory not explicitly described by the mem-
ory ranges as non-existent and refuse accesses to such memory. The checks are
only performed if there’s at least one memory range defined. If off is specified,
make GDB treat the memory not explicitly described by the memory ranges as
RAM. The default value is off.

show mem inaccessible-by-default
Show the current handling of accesses to unknown memory.

8.15 Copy Between Memory and a File

You can use the commands dump, append, and restore to copy data between target memory
and a file. The dump and append commands write data to a file, and the restore command
reads data from a file back into the inferior’s memory. Files may be in binary, Motorola
S-record, Intel hex, or Tektronix Hex format; however, GDB can only append to binary files.

dump [format| memory filename start_addr end_addr

dump [format| value filename expr
Dump the contents of memory from start_addr to end_addr, or the value of
expr, to filename in the given format.

The format parameter may be any one of:
binary Raw binary form.

ihex Intel hex format.

Chapter 8: Examining Data 95

srec Motorola S-record format.
tekhex Tektronix Hex format.

GDB uses the same definitions of these formats as the GNU binary utilities, like
‘objdump’ and ‘objcopy’. If format is omitted, GDB dumps the data in raw
binary form.

append [binary| memory filename start_addr end_addr

append [binary| value filename expr
Append the contents of memory from start_addr to end_addr, or the value of
expr, to the file filename, in raw binary form. (GDB can only append data to
files in raw binary form.)

restore filename |[binary| bias start end
Restore the contents of file filename into memory. The restore command can
automatically recognize any known BFD file format, except for raw binary. To
restore a raw binary file you must specify the optional keyword binary after
the filename.

If bias is non-zero, its value will be added to the addresses contained in the file.
Binary files always start at address zero, so they will be restored at address
bias. Other bfd files have a built-in location; they will be restored at offset bias
from that location.

If start and/or end are non-zero, then only data between file offset start and
file offset end will be restored. These offsets are relative to the addresses in the
file, before the bias argument is applied.

8.16 How to Produce a Core File from Your Program

A core file or core dump is a file that records the memory image of a running process
and its process status (register values etc.). Its primary use is post-mortem debugging of a
program that crashed while it ran outside a debugger. A program that crashes automatically
produces a core file, unless this feature is disabled by the user. See Section 15.1 [Files],
page 155, for information on invoking GDB in the post-mortem debugging mode.

Occasionally, you may wish to produce a core file of the program you are debugging in
order to preserve a snapshot of its state. GDB has a special command for that.

generate-core-file [file]

gcore [file]
Produce a core dump of the inferior process. The optional argument file specifies
the file name where to put the core dump. If not specified, the file name defaults
to ‘core.pid’, where pid is the inferior process ID.

Note that this command is implemented only for some systems (as of this
writing, GNU/Linux, FreeBSD, Solaris, Unixware, and S390).

8.17 Character Sets

If the program you are debugging uses a different character set to represent characters and
strings than the one GDB uses itself, GDB can automatically translate between the character

96 Debugging with GDB

sets for you. The character set GDB uses we call the host character set; the one the inferior
program uses we call the target character set.

For example, if you are running GDB on a GNU/Linux system, which uses the ISO Latin
1 character set, but you are using GDB’s remote protocol (see Chapter 17 [Remote Debug-
ging], page 171) to debug a program running on an IBM mainframe, which uses the EBCDIC
character set, then the host character set is Latin-1, and the target character set is EBCDIC.
If you give GDB the command set target-charset EBCDIC-US, then GDB translates be-
tween EBCDIC and Latin 1 as you print character or string values, or use character and
string literals in expressions.

GDB has no way to automatically recognize which character set the inferior program
uses; you must tell it, using the set target-charset command, described below.

Here are the commands for controlling GDB’s character set support:

set target-charset charset
Set the current target character set to charset. We list the character set
names GDB recognizes below, but if you type set target-charset followed
by (TAB)(TAB), GDB will list the target character sets it supports.

set host-charset charset
Set the current host character set to charset.

By default, GDB uses a host character set appropriate to the system it is running
on; you can override that default using the set host-charset command.

GDB can only use certain character sets as its host character set. We list the
character set names GDB recognizes below, and indicate which can be host
character sets, but if you type set target-charset followed by (TAB)(TAB),
GDB will list the host character sets it supports.

set charset charset
Set the current host and target character sets to charset. As above, if you type
set charset followed by (TAB)(TAB), GDB will list the name of the character sets
that can be used for both host and target.

show charset
Show the names of the current host and target charsets.

show host-charset
Show the name of the current host charset.

show target-charset
Show the name of the current target charset.
GDB currently includes support for the following character sets:

ASCII Seven-bit U.S. ASCII. GDB can use this as its host character set.

IS0-8859-1
The ISO Latin 1 character set. This extends ASCII with accented characters
needed for French, German, and Spanish. GDB can use this as its host character
set.

Chapter 8: Examining Data 97

EBCDIC-US

IBM1047 Variants of the EBCDIC character set, used on some of IBM’s mainframe op-
erating systems. (GNU/Linux on the S/390 uses U.S. ASCII.) GDB cannot use
these as its host character set.

Note that these are all single-byte character sets. More work inside GDB is needed
to support multi-byte or variable-width character encodings, like the UTF-8 and UCS-2
encodings of Unicode.

Here is an example of GDB’s character set support in action. Assume that the following
source code has been placed in the file ‘charset-test.c’:
#include <stdio.h>

char ascii_hello[]
= {72, 101, 108, 108, 111, 44, 32, 119,
111, 114, 108, 100, 33, 10, 0};
char ibm1047_hello[]
= {200, 133, 147, 147, 150, 107, 64, 166,
150, 153, 147, 132, 90, 37, 0};

main ()
{
printf ("Hello, world!\n");
}
In this program, ascii_hello and ibm1047_hello are arrays containing the string
‘Hello, world!’ followed by a newline, encoded in the Ascit and 1BM1047 character sets.

We compile the program, and invoke the debugger on it:

$ gcc -g charset-test.c -o charset-test

$ gdb -nw charset-test

GNU gdb 2001-12-19-cvs

Copyright 2001 Free Software Foundation, Inc.

(gdb)
We can use the show charset command to see what character sets GDB is currently

using to interpret and display characters and strings:
(gdb) show charset
The current host and target character set is ‘IS0-8859-1’.
(gdb)
For the sake of printing this manual, let’s use ASCII as our initial character set:
(gdb) set charset ASCII
(gdb) show charset
The current host and target character set is ‘ASCII’.
(gdb)

Let’s assume that ASCII is indeed the correct character set for our host system — in
other words, let’s assume that if GDB prints characters using the Ascil character set, our
terminal will display them properly. Since our current target character set is also ASCII, the
contents of ascii_hello print legibly:

(gdb) print ascii_hello
$1 = 0x401698 "Hello, world!\n"
(gdb) print ascii_hello[0]
$2 = 72 H’
(gdb)
GDB uses the target character set for character and string literals you use in expressions:

98 Debugging with GDB

(gdb) print ’+’
$3 = 43 ’+
(gdb)

The AscII character set uses the number 43 to encode the ‘+’ character.

GDB relies on the user to tell it which character set the target program uses. If we print
ibm1047_hello while our target character set is still Ascii, we get jibberish:
(gdb) print ibm1047_hello
$4 = 0x4016a8 "\310\205\223\223\226k0\246\226\231\223\204Z%"
(gdb) print ibm1047_hello[0]
$5 = 200 ’\310°
(gdb)
If we invoke the set target-charset followed by (TAB)(TAB), GDB tells us the character
sets it supports:
(gdb) set target-charset

ASCII EBCDIC-US IBM1047 IS0-8859-1
(gdb) set target-charset

We can select 1IBM1047 as our target character set, and examine the program’s strings
again. Now the ASCII string is wrong, but GDB translates the contents of ibm1047_hello
from the target character set, IBM1047, to the host character set, ASCil, and they display
correctly:

(gdb) set target-charset IBM1047

(gdb) show charset

The current host character set is ‘ASCII’.

The current target character set is ‘IBM1047°.
(gdb) print ascii_hello

$6 = 0x401698 "\110\145%%7\054\040\1677\162%\144\041\012"
(gdb) print ascii_hello[0]

$7 = 72 ’\110°

(gdb) print ibm1047_hello

$8 = 0x4016a8 "Hello, world!\n"

(gdb) print ibm1047_hellol[0]

$9 = 200 ’H’
(gdb)
As above, GDB uses the target character set for character and string literals you use in
expressions:
(gdb) print ’+’
$10 = 78 ’+°
(gdb)

The 1BM1047 character set uses the number 78 to encode the ‘+’ character.

8.18 Caching Data of Remote Targets

GDB can cache data exchanged between the debugger and a remote target (see Chapter 17
[Remote Debugging], page 171). Such caching generally improves performance, because it
reduces the overhead of the remote protocol by bundling memory reads and writes into large
chunks. Unfortunately, GDB does not currently know anything about volatile registers, and
thus data caching will produce incorrect results when volatile registers are in use.

set remotecache on

set remotecache off
Set caching state for remote targets. When ON, use data caching. By default,
this option is OFF.

Chapter 8: Examining Data 99

show remotecache
Show the current state of data caching for remote targets.

info dcache
Print the information about the data cache performance. The information
displayed includes: the dcache width and depth; and for each cache line, how
many times it was referenced, and its data and state (dirty, bad, ok, etc.). This
command is useful for debugging the data cache operation.

100 Debugging with GDB

Chapter 9: C Preprocessor Macros 101

9 C Preprocessor Macros

Some languages, such as C and C++, provide a way to define and invoke “preprocessor
macros” which expand into strings of tokens. GDB can evaluate expressions containing
macro invocations, show the result of macro expansion, and show a macro’s definition,
including where it was defined.

You may need to compile your program specially to provide GDB with information about
preprocessor macros. Most compilers do not include macros in their debugging information,
even when you compile with the ‘-g’ flag. See Section 4.1 [Compilation], page 25.

A program may define a macro at one point, remove that definition later, and then
provide a different definition after that. Thus, at different points in the program, a macro
may have different definitions, or have no definition at all. If there is a current stack frame,
GDB uses the macros in scope at that frame’s source code line. Otherwise, GDB uses the
macros in scope at the current listing location; see Section 7.1 [List], page 67.

At the moment, GDB does not support the ## token-splicing operator, the # stringification
operator, or variable-arity macros.

Whenever GDB evaluates an expression, it always expands any macro invocations present
in the expression. GDB also provides the following commands for working with macros
explicitly.

macro expand expression

macro exp expression
Show the results of expanding all preprocessor macro invocations in expression.
Since GDB simply expands macros, but does not parse the result, expression
need not be a valid expression; it can be any string of tokens.

macro expand-once expression

macro expl expression
(This command is not yet implemented.) Show the results of expanding those
preprocessor macro invocations that appear explicitly in expression. Macro
invocations appearing in that expansion are left unchanged. This command
allows you to see the effect of a particular macro more clearly, without being
confused by further expansions. Since GDB simply expands macros, but does
not parse the result, expression need not be a valid expression; it can be any
string of tokens.

info macro macro
Show the definition of the macro named macro, and describe the source location
where that definition was established.

macro define macro replacement-1ist

macro define macro (arglist) replacement-1list
(This command is not yet implemented.) Introduce a definition for a preproces-
sor macro named macro, invocations of which are replaced by the tokens given
in replacement-list. The first form of this command defines an “object-like”
macro, which takes no arguments; the second form defines a “function-like”
macro, which takes the arguments given in arglist.

102

Debugging with GDB

A definition introduced by this command is in scope in every expression eval-
uated in GDB, until it is removed with the macro undef command, described
below. The definition overrides all definitions for macro present in the program
being debugged, as well as any previous user-supplied definition.

macro undef macro

(This command is not yet implemented.) Remove any user-supplied definition
for the macro named macro. This command only affects definitions provided
with the macro define command, described above; it cannot remove definitions
present in the program being debugged.

macro list

(This command is not yet implemented.) List all the macros defined using the
macro define command.

Here is a transcript showing the above commands in action. First, we show our source

files:

$ cat sample.c
#include <stdio.h>
#include "sample.h"

#define M 42
#define ADD(x) (M + x)

main ()
{
#define N 28

printf ("Hello, world!\n");
#undef N

printf ("We’re so creative.\n");
#define N 1729

printf ("Goodbye, world!\n");
}
$ cat sample.h
#define Q <
$

Now, we compile the program using the GNU C compiler, Gcc. We pass the ‘~gdwarf-2’
and ‘-g3’ flags to ensure the compiler includes information about preprocessor macros in
the debugging information.

$ gcc -gdwarf-2 -g3 sample.c -o sample
$

Now, we start GDB on our sample program:

$ gdb -nw sample

GNU gdb 2002-05-06-cvs

Copyright 2002 Free Software Foundation, Inc.
GDB is free software,

(gdb)

We can expand macros and examine their definitions, even when the program is not
running. GDB uses the current listing position to decide which macro definitions are in
scope:

(gdb) list main
3
4 #define M 42

Chapter 9: C Preprocessor Macros 103

5 #define ADD(x) (M + x)

6

7 main ()

8 {

9 #define N 28

10 printf ("Hello, world!\n");

11 #undef N

12 printf ("We’re so creative.\n");

(gdb) info macro ADD

Defined at /home/jimb/gdb/macros/play/sample.c:5

#define ADD(x) (M + x)

(gdb) info macro Q

Defined at /home/jimb/gdb/macros/play/sample.h:1
included at /home/jimb/gdb/macros/play/sample.c:2

#define Q <

(gdb) macro expand ADD(1)

expands to: (42 + 1)

(gdb) macro expand-once ADD(1)

expands to: once (M + 1)

(gdb)

In the example above, note that macro expand-once expands only the macro invocation
explicit in the original text — the invocation of ADD — but does not expand the invocation
of the macro M, which was introduced by ADD.

Once the program is running, GDB uses the macro definitions in force at the source line
of the current stack frame:

(gdb) break main

Breakpoint 1 at 0x8048370: file sample.c, line 10.
(gdb) run

Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10
10 printf ("Hello, world!\n");
(gdb)

At line 10, the definition of the macro N at line 9 is in force:

(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28

(gdb) macro expand N Q M

expands to: 28 < 42

(gdb) print N Q M

$1 =1

(gdb)

As we step over directives that remove N’s definition, and then give it a new definition,
GDB finds the definition (or lack thereof) in force at each point:

(gdb) next
Hello, world!
12 printf ("We’re so creative.\n");

(gdb) info macro N

The symbol ‘N’ has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12

(gdb) next

We’re so creative.

14 printf ("Goodbye, world!\n");

(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:13

104 Debugging with GDB

#define N 1729

(gdb) macro expand N Q M
expands to: 1729 < 42
(gdb) print N Q M

$2 =0

(gdb)

Chapter 10: Tracepoints 105

10 Tracepoints

In some applications, it is not feasible for the debugger to interrupt the program’s execution
long enough for the developer to learn anything helpful about its behavior. If the program’s
correctness depends on its real-time behavior, delays introduced by a debugger might cause
the program to change its behavior drastically, or perhaps fail, even when the code itself is
correct. It is useful to be able to observe the program’s behavior without interrupting it.

Using GDB’s trace and collect commands, you can specify locations in the program,
called tracepoints, and arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the tfind command, you can examine the values those expressions had when
the program hit the tracepoints. The expressions may also denote objects in memory—
structures or arrays, for example—whose values GDB should record; while visiting a partic-
ular tracepoint, you may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with you, it can do so quickly
and unobtrusively, hopefully not disturbing the program’s behavior.

The tracepoint facility is currently available only for remote targets. See Chapter 16
[Targets], page 167. In addition, your remote target must know how to collect trace data.
This functionality is implemented in the remote stub; however, none of the stubs distributed
with GDB support tracepoints as of this writing. The format of the remote packets used to
implement tracepoints are described in Section D.6 [Tracepoint Packets], page 351.

This chapter describes the tracepoint commands and features.

10.1 Commands to Set Tracepoints

Before running such a trace experiment, an arbitrary number of tracepoints can be set. Like
a breakpoint (see Section 5.1.1 [Set Breaks|, page 38), a tracepoint has a number assigned
to it by GDB. Like with breakpoints, tracepoint numbers are successive integers starting
from one. Many of the commands associated with tracepoints take the tracepoint number
as their argument, to identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set of data that you
want the target to collect in the trace buffer when it hits that tracepoint. The collected data
can include registers, local variables, or global data. Later, you can use GDB commands to
examine the values these data had at the time the tracepoint was hit.

This section describes commands to set tracepoints and associated conditions and ac-
tions.

10.1.1 Create and Delete Tracepoints

trace The trace command is very similar to the break command. Its argument can
be a source line, a function name, or an address in the target program. See
Section 5.1.1 [Set Breaks|, page 38. The trace command defines a tracepoint,
which is a point in the target program where the debugger will briefly stop,
collect some data, and then allow the program to continue. Setting a tracepoint
or changing its commands doesn’t take effect until the next tstart command;
thus, you cannot change the tracepoint attributes once a trace experiment is
running.

Here are some examples of using the trace command:

106

Debugging with GDB

(gdb) trace foo.c:121 // a source file and line number
(gdb) trace +2 // 2 lines forward

(gdb) trace my_function // first source line of function
(gdb) trace *my_function // EXACT start address of function

(gdb) trace *0x2117c4 // an address
You can abbreviate trace as tr.

The convenience variable $tpnum records the tracepoint number of the most
recently set tracepoint.

delete tracepoint [num]

Permanently delete one or more tracepoints. With no argument, the default is
to delete all tracepoints.

Examples:
(gdb) delete trace 1 23 // remove three tracepoints
(gdb) delete trace // remove all tracepoints

You can abbreviate this command as del tr.

10.1.2 Enable and Disable Tracepoints

disable tracepoint [num]

Disable tracepoint num, or all tracepoints if no argument num is given. A
disabled tracepoint will have no effect during the next trace experiment, but
it is not forgotten. You can re-enable a disabled tracepoint using the enable
tracepoint command.

enable tracepoint [num|

Enable tracepoint num, or all tracepoints. The enabled tracepoints will become
effective the next time a trace experiment is run.

10.1.3 Tracepoint Passcounts

passcount [n [num]]

Set the passcount of a tracepoint. The passcount is a way to automatically
stop a trace experiment. If a tracepoint’s passcount is n, then the trace exper-
iment will be automatically stopped on the n’th time that tracepoint is hit. If
the tracepoint number num is not specified, the passcount command sets the
passcount of the most recently defined tracepoint. If no passcount is given, the
trace experiment will run until stopped explicitly by the user.

Examples:

(gdb) passcount 5 2 // Stop on the 5th execution of
// tracepoint 2

(gdb) passcount 12 // Stop on the 12th execution of the
// most recently defined tracepoint.

(gdb) trace foo

(gdb) pass 3

(gdb) trace bar

Chapter 10: Tracepoints 107

(gdb) pass 2

(gdb) trace baz

(gdb) pass 1 // Stop tracing when foo has been
// executed 3 times OR when bar has
// been executed 2 times
// OR when baz has been executed 1 time.

10.1.4 Tracepoint Action Lists

actions [num|

This command will prompt for a list of actions to be taken when the tracepoint
is hit. If the tracepoint number num is not specified, this command sets the
actions for the one that was most recently defined (so that you can define a
tracepoint and then say actions without bothering about its number). You
specify the actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just end. So far, the only
defined actions are collect and while-stepping.

To remove all actions from a tracepoint, type ‘actions num’ and follow it im-
mediately with ‘end’.
(gdb) collect data // collect some data

(gdb) while-stepping 5 // single-step 5 times, collect data

(gdb) end // signals the end of actionms.

In the following example, the action list begins with collect commands in-
dicating the things to be collected when the tracepoint is hit. Then, in order
to single-step and collect additional data following the tracepoint, a while-
stepping command is used, followed by the list of things to be collected while
stepping. The while-stepping command is terminated by its own separate
end command. Lastly, the action list is terminated by an end command.

(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
> collect $fp, $sp
> end
end

collect exprl, expr2, ...
Collect values of the given expressions when the tracepoint is hit. This com-
mand accepts a comma-separated list of any valid expressions. In addition to
global, static, or local variables, the following special arguments are supported:

$regs collect all registers
$args collect all function arguments
$locals collect all local variables.

You can give several consecutive collect commands, each one with a single
argument, or one collect command with several arguments separated by com-
mas: the effect is the same.

108 Debugging with GDB

The command info scope (see Chapter 13 [Symbols|, page 143) is particularly
useful for figuring out what data to collect.

while-stepping n
Perform n single-step traces after the tracepoint, collecting new data at each
step. The while-stepping command is followed by the list of what to collect
while stepping (followed by its own end command):

> while-stepping 12
> collect $regs, myglobal
> end

>

You may abbreviate while-stepping as ws or stepping.

10.1.5 Listing Tracepoints

info tracepoints [num]
Display information about the tracepoint num. If you don’t specify a tracepoint
number, displays information about all the tracepoints defined so far. For each
tracepoint, the following information is shown:

e its number

e whether it is enabled or disabled

e its address

e its passcount as given by the passcount n command

e its step count as given by the while-stepping n command
e where in the source files is the tracepoint set

e its action list as given by the actions command

(gdb) info trace
Num Enb Address PassC StepC What

1y 0x002117c4 O 0 <gdb_asm>

2 y 0x0020dc64 0 0 in g_test at g_test.c:1375
3 y 0x0020b1f4 0O 0 in get_data at ../foo.c:41
(gdb)

This command can be abbreviated info tp.

10.1.6 Starting and Stopping Trace Experiments

tstart This command takes no arguments. It starts the trace experiment, and begins
collecting data. This has the side effect of discarding all the data collected in
the trace buffer during the previous trace experiment.

tstop This command takes no arguments. It ends the trace experiment, and stops
collecting data.

Note: a trace experiment and data collection may stop automatically if any
tracepoint’s passcount is reached (see Section 10.1.3 [Tracepoint Passcounts],
page 106), or if the trace buffer becomes full.

tstatus This command displays the status of the current trace data collection.

Here is an example of the commands we described so far:

Chapter 10: Tracepoints 109

(gdb) trace gdb_c_test
(gdb) actions
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11
> collect $regs
> end
> end
(gdb) tstart
[time passes ...]
(gdb) tstop

10.2 Using the Collected Data

After the tracepoint experiment ends, you use GDB commands for examining the trace
data. The basic idea is that each tracepoint collects a trace snapshot every time it is
hit and another snapshot every time it single-steps. All these snapshots are consecutively
numbered from zero and go into a buffer, and you can examine them later. The way you
examine them is to focus on a specific trace snapshot. When the remote stub is focused on a
trace snapshot, it will respond to all GDB requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from real memory or registers of the
program being debugged. This means that all GbB commands (print, info registers,
backtrace, etc.) will behave as if we were currently debugging the program state as it was
when the tracepoint occurred. Any requests for data that are not in the buffer will fail.

10.2.1 tfind n

The basic command for selecting a trace snapshot from the buffer is tfind n, which finds
trace snapshot number n, counting from zero. If no argument n is given, the next snapshot
is selected.

Here are the various forms of using the tfind command.

tfind start
Find the first snapshot in the buffer. This is a synonym for tfind 0 (since 0 is
the number of the first snapshot).

tfind none
Stop debugging trace snapshots, resume live debugging.

tfind end Same as ‘tfind none’.
tfind No argument means find the next trace snapshot.

tfind - Find the previous trace snapshot before the current one. This permits retracing
earlier steps.

tfind tracepoint num
Find the next snapshot associated with tracepoint num. Search proceeds for-
ward from the last examined trace snapshot. If no argument num is given, it
means find the next snapshot collected for the same tracepoint as the current
snapshot.

tfind pc addr
Find the next snapshot associated with the value addr of the program counter.
Search proceeds forward from the last examined trace snapshot. If no argument

110 Debugging with GDB

addr is given, it means find the next snapshot with the same value of PC as
the current snapshot.

tfind outside addrl1, addr2
Find the next snapshot whose PC is outside the given range of addresses.

tfind range addri, addr2
Find the next snapshot whose PC is between addrl and addr2.

tfind line [file:|n
Find the next snapshot associated with the source line n. If the optional argu-
ment file is given, refer to line n in that source file. Search proceeds forward
from the last examined trace snapshot. If no argument n is given, it means find
the next line other than the one currently being examined; thus saying tfind
line repeatedly can appear to have the same effect as stepping from line to
line in a live debugging session.

The default arguments for the tfind commands are specifically designed to make it easy
to scan through the trace buffer. For instance, tfind with no argument selects the next
trace snapshot, and tfind - with no argument selects the previous trace snapshot. So, by
giving one tfind command, and then simply hitting repeatedly you can examine all
the trace snapshots in order. Or, by saying tfind - and then hitting repeatedly you
can examine the snapshots in reverse order. The tfind line command with no argument
selects the snapshot for the next source line executed. The tfind pc command with no
argument selects the next snapshot with the same program counter (PC) as the current
frame. The tfind tracepoint command with no argument selects the next trace snapshot
collected by the same tracepoint as the current one.

In addition to letting you scan through the trace buffer manually, these commands make
it easy to construct GDB scripts that scan through the trace buffer and print out whatever
collected data you are interested in. Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

(gdb) tfind start

(gdb) while ($trace_frame != -1)

> printf "Frame Jd, PC = %08X, SP = 708X, FP = 708X\n", \
$trace_frame, $pc, $sp, $fp

> tfind

> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44

Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

Or, if we want to examine the variable X at each source line in the buffer:

(gdb) tfind start
(gdb) while ($trace_frame != -1)

Chapter 10: Tracepoints 111

> printf "Frame 7d, == %d\n", $trace_frame, X
> tfind line
> end

Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255

10.2.2 tdump

This command takes no arguments. It prints all the data collected at the current trace
snapshot.

(gdb) trace 444

(gdb) actions

Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end

(gdb) tstart

(gdb) tfind line 444

#0 gdb_test (pl=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)

at gdb_test.c:444

444 printp("%s: arguments = O0x%X Ox%X Ox%X O0x%X O0x%X Ox%X\n",)

(gdb) tdump
Data collected at tracepoint 2, trace frame 1:

do 0xc4aa0085 -995491707
d1 0x18 24

d2 0x80 128

d3 0x33 51

d4 0x71aea3d 119204413
d5 0x22 34

dé 0xe0 224

a7 0x380035 3670069

a0 0x19e24a 1696330

al 0x3000668 50333288
a2 0x100 256

a3 0x322000 3284992

a4 0x3000698 50333336
ab Oxlad3cc 1758156

fp 0x30bf3c 0x30bf3c

sp 0x30bf34 0x30bf34

ps 0x0 0

pc 0x20b2c8 0x20b2c8
fpcontrol 0x0 0

fpstatus 0x0 0

fpiaddr 0x0 0

p = 0x20ebb4 "gdb-test"
pl = (void *) Ox11
p2 = (void *) 0x22
p3 = (void *) 0x33

p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66

gdb_long_test = 17 ’\021°

(gdb)

112 Debugging with GDB

10.2.3 save-tracepoints filename

This command saves all current tracepoint definitions together with their actions and pass-
counts, into a file ‘filename’ suitable for use in a later debugging session. To read the
saved tracepoint definitions, use the source command (see Section 20.3 [Command Files],
page 219).

10.3 Convenience Variables for Tracepoints

(int) $trace_frame
The current trace snapshot (a.k.a. frame) number, or -1 if no snapshot is se-
lected.

(int) $tracepoint
The tracepoint for the current trace snapshot.

(int) $trace_line
The line number for the current trace snapshot.

(char [1) $trace_file
The source file for the current trace snapshot.

(char []) $trace_func
The name of the function containing $tracepoint.

Note: $trace_file is not suitable for use in printf, use output instead.

Here’s a simple example of using these convenience variables for stepping through all the
trace snapshots and printing some of their data.
(gdb) tfind start

(gdb) while $trace_frame != -1

> output $trace_file

> printf ", line %d (tracepoint #)d)\n", $trace_line, $tracepoint
> tfind

> end

Chapter 11: Debugging Programs That Use Overlays 113

11 Debugging Programs That Use Overlays

If your program is too large to fit completely in your target system’s memory, you can some-
times use overlays to work around this problem. GDB provides some support for debugging
programs that use overlays.

11.1 How Overlays Work

Suppose you have a computer whose instruction address space is only 64 kilobytes long, but
which has much more memory which can be accessed by other means: special instructions,
segment registers, or memory management hardware, for example. Suppose further that
you want to adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively independent,
and need not call each other directly; call these modules overlays. Separate the overlays
from the main program, and place their machine code in the larger memory. Place your
main program in instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that overlay’s machine
code from the large memory into the space set aside for it in the instruction memory, and
then jump to its entry point there.

Data Instruction Larger

Address Space Address Space Address Space

oo + Fommm e + Fommm o +

| | | | | |
Fomm + Fomm + Fomm +<-- overlay 1
| program | | main | .——--| overlay 1 | load address

| variables | | program | | . +

| and heap | | | | | |
Fmm + | | | Fmmm +<-- overlay 2
| | mmm e + | | load address

Fommmmmm o + | | | .-| overlay 2 |

| | [|

mapped -—->+----------- S B B +

address | | [|

| overlay | <=2 | |

| area | === 4= +<-- overlay 3
| | <——. | | load address

oo + ‘-—] overlay 3 |

| | | |

R + | |

o +

| |

Fommm +

A code overlay

The diagram (see [A code overlay], page 113) shows a system with separate data and
instruction address spaces. To map an overlay, the program copies its code from the larger
address space to the instruction address space. Since the overlays shown here all use the
same mapped address, only one may be mapped at a time. For a system with a single
address space for data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main program and the
overlay area.

114 Debugging with GDB

An overlay loaded into instruction memory and ready for use is called a mapped overlay;
its mapped address is its address in the instruction memory. An overlay not present (or only
partially present) in instruction memory is called unmapped; its load address is its address
in the larger memory. The mapped address is also called the virtual memory address, or
VMA; the load address is also called the load memory address, or LMA.

Unfortunately, overlays are not a completely transparent way to adapt a program to
limited instruction memory. They introduce a new set of global constraints you must keep
in mind as you design your program:

e Before calling or returning to a function in an overlay, your program must make sure
that overlay is actually mapped. Otherwise, the call or return will transfer control to
the right address, but in the wrong overlay, and your program will probably crash.

e If the process of mapping an overlay is expensive on your system, you will need to
choose your overlays carefully to minimize their effect on your program’s performance.

e The executable file you load onto your system must contain each overlay’s instruc-
tions, appearing at the overlay’s load address, not its mapped address. However, each
overlay’s instructions must be relocated and its symbols defined as if the overlay were
at its mapped address. You can use GNU linker scripts to specify different load and
relocation addresses for pieces of your program; see section “Overlay Description” in
Using Id: the GNU linker.

e The procedure for loading executable files onto your system must be able to load their
contents into the larger address space as well as the instruction and data spaces.

The overlay system described above is rather simple, and could be improved in many
ways:

e If your system has suitable bank switch registers or memory management hardware,
you could use those facilities to make an overlay’s load area contents simply appear at
their mapped address in instruction space. This would probably be faster than copying
the overlay to its mapped area in the usual way.

e If your overlays are small enough, you could set aside more than one overlay area, and
have more than one overlay mapped at a time.

e You can use overlays to manage data, as well as instructions. In general, data overlays
are even less transparent to your design than code overlays: whereas code overlays only
require care when you call or return to functions, data overlays require care every time
you access the data. Also, if you change the contents of a data overlay, you must copy
its contents back out to its load address before you can copy a different data overlay
into the same mapped area.

11.2 Overlay Commands

To use GDB’s overlay support, each overlay in your program must correspond to a separate
section of the executable file. The section’s virtual memory address and load memory
address must be the overlay’s mapped and load addresses. Identifying overlays with sections
allows GDB to determine the appropriate address of a function or variable, depending on
whether the overlay is mapped or not.

GDB’s overlay commands all start with the word overlay; you can abbreviate this as ov
or ovly. The commands are:

Chapter 11: Debugging Programs That Use Overlays 115

overlay off
Disable GDB’s overlay support. When overlay support is disabled, GDB assumes
that all functions and variables are always present at their mapped addresses.
By default, GDB’s overlay support is disabled.

overlay manual
Enable manual overlay debugging. In this mode, GDB relies on you to tell it
which overlays are mapped, and which are not, using the overlay map-overlay
and overlay unmap-overlay commands described below.

overlay map-overlay overlay

overlay map overlay
Tell cDB that overlay is now mapped; overlay must be the name of the object
file section containing the overlay. When an overlay is mapped, GDB assumes it
can find the overlay’s functions and variables at their mapped addresses. GDB
assumes that any other overlays whose mapped ranges overlap that of overlay
are now unmapped.

overlay unmap-overlay overlay

overlay unmap overlay
Tell GDB that overlay is no longer mapped; overlay must be the name of the
object file section containing the overlay. When an overlay is unmapped, GDB
assumes it can find the overlay’s functions and variables at their load addresses.

overlay auto
Enable automatic overlay debugging. In this mode, GDB consults a data struc-
ture the overlay manager maintains in the inferior to see which overlays are
mapped. For details, see Section 11.3 [Automatic Overlay Debugging], page 116.

overlay load-target

overlay load
Re-read the overlay table from the inferior. Normally, GDB re-reads the table
GDB automatically each time the inferior stops, so this command should only
be necessary if you have changed the overlay mapping yourself using GDB. This
command is only useful when using automatic overlay debugging.

overlay list-overlays

overlay list
Display a list of the overlays currently mapped, along with their mapped ad-
dresses, load addresses, and sizes.

Normally, when GDB prints a code address, it includes the name of the function the
address falls in:
(gdb) print main
$3 = {int ()} 0x11a0 <main>
When overlay debugging is enabled, GDB recognizes code in unmapped overlays, and prints
the names of unmapped functions with asterisks around them. For example, if foo is a
function in an unmapped overlay, GDB prints it this way:

(gdb) overlay list
No sections are mapped.
(gdb) print foo

116 Debugging with GDB

$5 = {int (int)} 0x100000 <*foo*>

When foo’s overlay is mapped, GDB prints the function’s name normally:

(gdb) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
mapped at 0x1016 - 0x104a
(gdb) print foo
$6 = {int (int)} 0x1016 <foo>
When overlay debugging is enabled, GDB can find the correct address for functions and

variables in an overlay, whether or not the overlay is mapped. This allows most GDB com-
mands, like break and disassemble, to work normally, even on unmapped code. However,

GDB’s breakpoint support has some limitations:

e You can set breakpoints in functions in unmapped overlays, as long as GDB can write
to the overlay at its load address.

e GDB can not set hardware or simulator-based breakpoints in unmapped overlays. How-
ever, if you set a breakpoint at the end of your overlay manager (and tell GDB which
overlays are now mapped, if you are using manual overlay management), GDB will re-set
its breakpoints properly.

11.3 Automatic Overlay Debugging

GDB can automatically track which overlays are mapped and which are not, given some
simple co-operation from the overlay manager in the inferior. If you enable automatic
overlay debugging with the overlay auto command (see Section 11.2 [Overlay Commands],
page 114), GDB looks in the inferior’s memory for certain variables describing the current
state of the overlays.

Here are the variables your overlay manager must define to support GDB’s automatic
overlay debugging:

_ovly_table:
This variable must be an array of the following structures:
struct
{

/* The overlay’s mapped address. */
unsigned long vma;

/* The size of the overlay, in bytes. */
unsigned long size;

/* The overlay’s load address. */
unsigned long lma;

/* Non-zero if the overlay is currently mapped;
zero otherwise. */
unsigned long mapped;

}

_novlys: This variable must be a four-byte signed integer, holding the total number of
elements in _ovly_table.

To decide whether a particular overlay is mapped or not, GDB looks for an entry in
_ovly_table whose vma and 1lma members equal the VMA and LMA of the overlay’s section

Chapter 11: Debugging Programs That Use Overlays 117

in the executable file. When GDB finds a matching entry, it consults the entry’s mapped
member to determine whether the overlay is currently mapped.

In addition, your overlay manager may define a function called _ovly_debug_event. If
this function is defined, GDB will silently set a breakpoint there. If the overlay manager
then calls this function whenever it has changed the overlay table, this will enable GDB to
accurately keep track of which overlays are in program memory, and update any breakpoints
that may be set in overlays. This will allow breakpoints to work even if the overlays are
kept in ROM or other non-writable memory while they are not being executed.

11.4 Overlay Sample Program

When linking a program which uses overlays, you must place the overlays at their load
addresses, while relocating them to run at their mapped addresses. To do this, you must
write a linker script (see section “Overlay Description” in Using Id: the GNU linker). Un-
fortunately, since linker scripts are specific to a particular host system, target architecture,
and target memory layout, this manual cannot provide portable sample code demonstrating
GDB’s overlay support.

However, the GDB source distribution does contain an overlaid program, with linker
scripts for a few systems, as part of its test suite. The program consists of the following
files from ‘gdb/testsuite/gdb.base’:

‘overlays.c’
The main program file.

‘ovlymgr.c’
A simple overlay manager, used by ‘overlays.c’.

‘foo.c’
‘bar.c’
‘baz.c’
‘grbx.c’ Overlay modules, loaded and used by ‘overlays.c’.

‘d10v.1d’
‘m32r.1d’ Linker scripts for linking the test program on the d10v-elf and m32r-elf
targets.

You can build the test program using the d10v-elf GCC cross-compiler like this:

d10v-elf-gcc -g -c overlays.c

d10v-elf-gcc -g -c ovlymgr.c

d10v-elf-gcc -g -c foo.c

d10v-elf-gcc -g -c bar.c

d10v-elf-gcc -g -c baz.c

d10v-elf-gcc -g -c grbx.c

d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \

baz.o grbx.o -W1l,-Td10v.1ld -o overlays

@B P B P B BB

The build process is identical for any other architecture, except that you must substitute
the appropriate compiler and linker script for the target system for d10v-elf-gcc and
d10v.1d.

118 Debugging with GDB

Chapter 12: Using ¢DB with Different Languages 119

12 Using GDB with Different Languages

Although programming languages generally have common aspects, they are rarely expressed
in the same manner. For instance, in ANSI C, dereferencing a pointer p is accomplished
by *p, but in Modula-2, it is accomplished by p~. Values can also be represented (and
displayed) differently. Hex numbers in C appear as ‘Oxlae’, while in Modula-2 they appear
as ‘1AEH’.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the above in your program’s native language, and allowing GDB to
output values in a manner consistent with the syntax of your program’s native language.
The language you use to build expressions is called the working language.

12.1 Switching Between Source Languages

There are two ways to control the working language—either have GDB set it automatically,
or select it manually yourself. You can use the set language command for either purpose.
On startup, GDB defaults to setting the language automatically. The working language is
used to determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate which
language a particular source file is in. However, most of the time GDB infers the language
from the name of the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within GDB, but you can set the
language associated with a filename extension. See Section 12.2 [Displaying the Language],
page 120.

This is most commonly a problem when you use a program, such as cfront or £2c, that
generates C but is written in another language. In that case, make the program use #line
directives in its C output; that way GDB will know the correct language of the source code
of the original program, and will display that source code, not the generated C code.

12.1.1 List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then GDB infers that its language
is the one indicated.

4 9

.ada
.ads
‘.adb’

“.a’ Ada source file.

3)

.C C source file

. Cpp

. CXX
‘Lot C++ source file

120 Debugging with GDB

‘om’ Objective-C source file

3 . f?

CF Fortran source file

‘.mod’ Modula-2 source file

3 . s7

©.8’ Assembler source file. This actually behaves almost like C, but GDB does not

skip over function prologues when stepping.

In addition, you may set the language associated with a filename extension. See Sec-
tion 12.2 [Displaying the Language], page 120.

12.1.2 Setting the Working Language

If you allow GDB to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command ‘set
language lang’, where lang is the name of a language, such as ¢ or modula-2. For a list
of the supported languages, type ‘set language’.

Setting the language manually prevents GDB from updating the working language au-
tomatically. This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages—but means different things. For instance, if the current source file were written
in C, and GDB was parsing Modula-2, a command such as:

print a =b + ¢

might not have the effect you intended. In C, this means to add b and ¢ and place the
result in a. The result printed would be the value of a. In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.

12.1.3 Having ¢DB Infer the Source Language

To have GDB set the working language automatically, use ‘set language local’ or ‘set
language auto’. GDB then infers the working language. That