
Getting to Know GDB

by Mike Loukides and Andy Oram

September, 1996

This document was reproduced with the permission of the authors. The original docu-

ment was printed in the September 1996 issue of The Linux Journal. This is part of a

larger text, Programming with GNU Software from O'Reilly and Associates.

There are many reasons you might need a debugger| the most obvious being that you're

a programmer and you've written an application that doesn't work right. Beyond this, Linux

depends heavily both on sharing source code and on porting code from other Unix systems.

For both types of code, you may turn up problems that the original authors didn't have on

their platform. So it's worth making friends with a good C debugger.

gdb is free software and you are welcome to distribute copies of it

under certain conditions.

Luckily, the free Software Foundation has come through with an excellent debugger

named gdb, which works with both C and C++ code. gdb lets you stop execution within

the program, examine and change variables during execution, and trace how the program

executes. It also has command-line editing and history features similara to those used with

bash (the GNU shell) and Emacs. In fact, it now has a graphical interface. But since we've

grown up using the command-line interface (and it's easier to show in print) we'll stick to

that in this article. To get full documentation on all gdb commands, read the Debugging with

gdb manual on-line or order it from the Free Software Foundation.

Compilation for gdb

1

Before you can use gdb to debug a program, compile and link your code with the -g

option. This causes the compiler to generate an augmented symbol table. For example, the

command:

$ gcc -g �lel.c �le2.c �le3.o

compiles the C source �les �le1.c, generating an expanded symbol table for use with gdb.

These �les are linked with �le3.o, an object �le that has already been compiled.

The compiler's -g and -O are not incompatible; you can optimized and compile for de-

bugging at the same time. Furthermore, unlike many otherr debuggers, gdb will even give

you somewhat intelligible results. However, debugging optimized code is di�cult since, by

nature, optimization makes the machine code diverge from what the source code says to do.

Starting gdb

To debug a compiled program with gdb, use the command:

$ gdb program [core-dump]

where program is the �lename of the executable �le you want to debug, and core-dump is the

name of a core dump �le left from an earlier attempt to run your program. By examining

the core dump with gdb, you can discover where the program failed and the reason for its

failure. For example, the following command tells gdb to read the executable �le qsort2 and

the core dump core.2957:

$ gdb qsort2 core.2957

gdb is free software and you are welcome to

distribute copies of it under certain conditions;

type ``show copying'' to see the conditions.

There is absolutely no warranty for gdb;

type ``show warranty'' for details.

gdb 4.13 (sparc-sun-sunos4.1.3),

Copyright 1993 Free Software Foundation, Inc...

Core was generated by 'qsort2'.

Program terminated with signal 7, emulator trap.

#0 0x2734 in qsort2 (1=93643, u=93864, strat=1)

at qsort2.c:118

118 do i++; while (i <= u && x[i] < t);

(gdb) quit

$

The startup is fairly verbose; it tells you which version of gdb your're using. Then it tells you

how the core �le was generated (by the program qsort2, which received signal 7, an \emulator

trap"), and what the program was doing (executing line 118). The prompt \(gdb)" tells you

that gdb is ready for a command. In this case, we'll just quit.

Both the executable �le and the core �le arguments are optional. You can supply a core

�le at a later date with the core command.

Basic gdb COMMANDS

With just a few commands, you can get most of your work done in gdb. The basic things

you have to do are: look at your source code, set breakpoints, run programs, and check

variables.

If you forget which command to use (or want to check for obscure features) use the built-

in help facility, you can request a particular command (like help print) or help on a number

of special topics.

Listing a File

To see the contents of the source �le from which the executable program was compiled,

use the command list:

$ gdb qsort2

(gdb) list

13 void qsort2();

14 void swap();

15 void gen and sort();

16 void init orgar.();

17 void init random();

18 void print array();

19

20 main()

21 f

22 int power=1;

(gdb)

To print speci�c lines from the �le you are currently debugging, use a list command:

(gdb) list line, line2

To list the �rst 10 lines from a particular function, use a list command:

(gdb) list routine-name

Executing a Program

To run the program you are debugging, use the run command. This may be followed by

any arguments you want to pass to the program, including the standard input and output

speci�ers < and >, and shell wildcards (*, ? [,]). You can't use C-shell history (!) or

pipes (|).

For example, consider running the program exp through gdb. The following gdb com-

mand runs exp with the argument -b, taking the standard input to exp from invalues and

redirecting standard output to the �le outtable:

$ gdb exp

(gdb) run -b < invalues > outtable

That is, this command runs exp -b < invalues > outtable. If you have not set any break-

points or used any other gdb debugging features, exp will run until it terminates, either

correctly or incorrectly.

If the program you're debugging terminates abnormally, control returns to gdb. Your can

then use gdb commands to �nd out why the program terminated. The backtrace command

gives a stack backtrace showing exactly what the program was doing when it bombed out:

$ gdb badref

(gdb) run

Starting program: /home/los/mike1/cuser/badref

0x22c8 in march to infinity () at badref.c:16

16 h |= *p;

(gdb) backtrace

#0 00x22c8 in march to infinity (1) at badref.c:16

#1 0x2324 in setup () at badref.c:25

#2 0x2340 in main () at badref.c:30

(gdb)

backtrace (which is usually abbreviated back) produces a list of all active procedures and

the arguments with which they were called, starting with the most recent. So this display

shows that the program died in a function named march to infinity(); this function was

called by the function setup(), which in turn was called by the function main(). The only

thing left is to �gure out exactly what went wrong in march to infinity().

Printing Data

You can inspect the variable values by using the print command. Let's use it to see

exactly what happened in the previous program. First, we'll list some code to see what

we're dealing with:

(gdb)list

8

9 p=&j;

10 /� march off the end of the world�/

11 for (i = 0; i < VERYBIG; i++)

12 f

13 h |= *p;

14 p++;

15 g

16 printf("h: %dnen",h);

17

It should already be pretty clear what's happening. p in some kind of a pointer; we can test

that by using the whatis command, which shows us its declaration:

(gdb) whatis p

type = int *

(gdb) print p

$1 = (int *) 0xf800000

(gdb) print *p

$2 = Cannot access memory at address 0xf800000.

(gdb) print h

$3 = -1

(gdb)

When we look at p, we see that it's pointing somewhere up in the stratosphere. Of course,

there's no ad hoc way to know whether this value for p is legitimate or not. But we can see if

we can read the data p points to, just as our program did|and when we give the command

print *p, we see that it's pointing to inaccessible data.

print is one of gdb's true power features. You can use it to print the value of any

expression that's valid in the language you're debugging. In addition to variables from your

program, expressions may include:

� Calls to functions within your program; these function calls may have \side-e�ects"

(i.e., they can do things like modify global variables that will be visible when you

continue program execution).

(gdb) print �nd entry(1.0)

$1 = 3

� Data structures and other complex objects.

(dgb) print *table start

$8 = fe reference = 'ne000' <repeats 79

times>,

location = 0x0, next = 0x0g

Breakpoints

Breakpoints let you stop a program temporarily while it is executing. While the program

is stopped at a breakpoint, you can examine or modify variables, execute functions, or

execute any other gdb command. This lets you examine the program's state to determine

whether execution is proceeding correctly. You can then resume program execution at the

point where it left o�.

The break command (which you can abbreviate to b) sets breakpoints in the program

you are debugging. This command has the following forms:

break line-number

Stop the program just before executing the given line.

break function-name

Stop the program just before entering the named function.

break line-or-function if condition

Stop the program if the following condition is true when the program reaches the

given line or function.

The command break function-name sets a breakpoint at the entrance to the speci�ed

function. When the program is executing, gdb will temporarily halt the program at the

�rst executable line of the given function. For example, the break command below sets a

breakpoint at the entrance to the function init random(). The run command then executes

the program until it reaches the beginning of this function. Execution stops at the �rst

executable line within init random (), which is a for loop beginning on line 155 of the source

�le:

$ gdb qsort2

(gdb) break init random

Breakpoint 1 at 0x28bc: file qsort2.c, line 155.

(gdb) run

Starting program: /home/los/mike1/cuser/qsort2

Tests with RANDOM inputs and FIXED pivot

Breakpoint 1, init random (number=10) at

qsort2.c:155

155 for (i = 0; < number; i++) f
(gdb)

When you set the breakpoint, gdb assigns a unique identi�cation number (in this case, 1) and prints some

essential information about the breakpoint. Whenever it reaches a breakpoint, gdb prints the breakpoint's

identi�cation number, the description, and the current line number. If you have several breakpoints set in

the program, the identi�cation number tells you which one cased the program to stop. gdb then shows you

the line at which the program has stopped.

To stop execution when the program reaches a particular source line, use the break line-number com-

mand. For example, the following break command sets a breakpoint at line 155 of the program:

(gdb) break 155

Note: breakpoint 1 also set at pc 0x28bc.

Breakpoint 2 at 0x28bc; file qsort2.c, line 155.

(gdb)

When stopped at a breakpoint, you can continue execution with the continue command (which you

can abbreviate as c):

$ gdb qsort2

(gdb) break init random

Breakpoint 1 at 0x28bc:file qsort2.c, line 155.

(gdb) run

Starting program: /home/los/mike1/curser/qsort2

Tests with RANDOM inputs and FIXED pivot

Breakpoint 1, init random (number=10) at

qsort2.c:155

155 for (i = 0; i < number; i++)f
(gdb) continue

Continuing.

test of 10 elements: user + sys time, ticks: 0

Breakpoint 1, init random (number=100) at

qsort2.c:155

155 for (i = 0; i < number; i++) f
(gdb)

Execution will continue until the program ends, you reach another breakpoint, or an error occurs.

gdb supports another kind of breakpoint, called a \watchpoint". Watchpoints are sort of like the \break-

if" breakpoints we just discussed, except they aren't attached to a particular line or function entry. A

watchpoint stops the program whenever an expression is true: for example, the command below stops the

program whenever the variable testsize is greater that 100000.

(gdb) watch testsize > 100000

Watchpoints are a great idea, but they're hard to use e�ectively. You're exactly what you want if

something is randomly trashing an important variable, and you can't �gure out what: the program bombs

out, you discover that mungus is set to some screwy value, but you know that the code that's supposed

to set mungus works; it's clearly being corrupted by something else. The problem is that without special

hardware support (which exists on only a few workstations), setting a watchpoint slows your program down

by a factor of 100 or so. Therefore, if you're really desperate, you can use regular breakpoints to get your

program as close as possible to the point of failure; set a watchpoint; let the program continue execution

with the continue command; and let your program cook overnight.

Single-step Execution

gdb provides two forms of single-step execution. The next command executes an entire function when it

encounters a call, while the step command enters the function and keeps going one statement at a time. To

understand the di�erence between these two commands, look at their behavior in the context of debugging

a simple program. Consider the following example:

$ gdb qsort2

(gdb) break main

Breakpoint 6 at 0x235c: file qsort2.c, line 40.

(gdb) run

Breakpoint 6, at main () at qsort2.c:40

40 int power=1;

(gdb) step

43 printf(``Tests with RANDOM inputs

and FIXED pivot nn'');
(gdb) step

Tests with RANDOM inputs and FIXED pivot

45 for (testsize = 10; testsize <=

MAXSIZE; testsize *= 10)f
(gdb) step

46 gen and sort(testsize,RANDOM,FIXED);

(gdb) step gen and sort (numels=10, genstyle=0,

strat=1) at

qsort2.c:79

79 s = &start time;

(gdb)

We set a breakpoint at the entry to the main () function, and started single-stepping. After a few

steps, we reach the call to gen and sort(). At this point, the step command takes us into the func-

tion gen and sort (); all of a sudden, we're executing at line 79, rather that 46. Rather than executing

gen and sort() in its entirety, it stepped \into" the function. In contrast, next would execute line 46

entirely, including the call to gen and sort().

Moving Up and Down the Call Stock

A number of informational commands vary according to where you are in the program; their arguments

and output depend on the current frame. Usually, the current frame is the function where you are stopped.

Occasionally, however, you want to change this default so you can do something like display a number of

variables from another function.

The commands up and down move you up and down one level in the current call stack. the commands

up n and down n move you up of down n levels in the stack. Down the stack means farther away from

the program's main() function; up means closer to main(). By using up and down, you can investigate

local variables in any function that's on the stack, including recursive invocations. Naturally, you can't move

down until you've moved up �rst|by default you're in the currently executing function, which is as far down

in the stack as you can go.

For example, in qsort2(),main() calls gen and sort(), which calls qsort2(), which calls swap(). If

you're stopped at a breakpoint in swap(), a where command gives you a report like this:

(gdb) where

#0 swap (i=3, j=7) at qsort2.c:134

#1 0x278c in qsort2 (1=0, strat=1) at

qsort2.c:121

#2 0x25a8 in gen and sort (numels=10, genstyle=0,

strat=1) at qsort2.c:90

#3 0x23a8 in main () at qsort2.c:46

(gdb)

The up command directs gdb's attention at the stack frame for qsort2(), meaning that you can now

examine qsort2's local variables; previously, they were out of context. Another up gets you to the stack

frame for gen and sort(); the command down moves you back towards swap(). If you forget where you

are, the command frame summarizes the current stack frame:

(gdb) frame

#1 0x278c in qsort2 (1=0, u=9, strat=1) at

qqsort2.c:121

121 swap(i, j);

In this case, it shows that we're looking at the stack frame for qsort2(), and currently executing the

call to the function swap(). This should be no surprise, since we already know that we're stopped at a

breakpoint in swap.

Machine Languae Facilities

gdb provides a few special commands for working with machine language. First, the info line command

is used to tell you where the object code for a speci�c line of source code begins and ends. For example:

(gdb) info line 121

Line 121 of "qsort2.c" starts at pc 0x277c and

ends at 0x278c.

Your can then use the disassemble command to discover the machine code for this line:

(gdb) disassemble 0x260c 0x261c

Dump of assembler code from 0x260c to 0x261c:

0x260c <qsort2>: save %sp, -120, %sp

0x2610 <qsort2+4>: st %i0, [%fp + 0x44]

0x2614 <qsort2+8>: st %i1, [%fp + 0x48]

0x2618 <qsort2+12>: st %i2, [%fp + 0x4c]

End of assembler dump.

The commands stepi and nexti are equivalent to step and next but work on the level of machine

language instructions rather that source statements. The stepi commandexecutes the next machine language

instruction. The nexti command executes the next machine language instruction, unless that instruction

calls a function, in which case nexti executes the entire function.

The memory inspection command x (for \examine") prints the contents of memory. It can be used in

two ways:

(gdb) x/nfu addr (gdb) x addr

The �rst form provides explicit formatting information; the second form accepts the default (which is,

generally, whatever format was used for the previous x or print command|or hexadecimal, if there hasn't

been a previous command). addr is the address whose contents you want to display.

Formatting information is given by nfu, which is a sequence of three items:

� n is a repeat count tht speci�es how many data items to print;

� f speci�es what format to use for the output;

� u speci�es the size of the data unit (e.g., byte, word, etc.).

(gdb) list 1,30

1 #include <fstream.h>

2 #include <strings.h>

3 #include <strings.h>

4

5 const unsigned int REF SIZE = 80;

6

7 class entry f
8 char *e text;

9 char.e reference[REF SIZE];

10 public:

11 entry(const char *text,

12 const unsigned int length,

13 const char *ref) f
14 e text = new char(length+1);

15 strncpy(e text, text, length+1);

16 strncpy(e reference, ref, REF SIZE);

17 g
18 g;
19

20 main(int argc, char *argv[])

21 f
22 char *text 1 = ``Finding errors in C++ programs'';

23 char *ref 1 = ``errc++'';

24 entry entry 1(text 1, strlen(text 1), ref 1);

25 g

Listing 1.Trivial C++Program

For example, let's investigate s in line 79 of our program. print shows that it's a pointer to a struct

tms:

79 s = &start time;

(gdb) print s

$1 = (struct tms *) 0xf7fffae8

The easy way to investigate further would be to use the command print *s, which displays the individual

�elds of the data structure.

(gdb() print *s

$2 = ftms utime = 9, tms stime = 14,

tms cutime = 0, tms cstime = 0g

For the sake of argument, let's use x to examine the data here. The struct tms (which is de�ned in

the header �le time.h) consists of four int �elds; so we need to print four decimal words. We can do that

with the command x/4dw, starting at location s:

(gdb) x/4dw s 0xf7fffae8 < end+--138321592>: 9 14

0 0

The four words starting at location s are 9, 14, 0, and 0|which agrees with what print shows.

Signals

gdb normally traps most signals sent to it. By trapping signals, gdb gets to decide what to do with

the process you are running. For example. pressing CTRL-C sends the interrupt signal to gdb, which would

normally terminate it. But you probably don't want to interrupt gdb; you really want to interrupt the

program that gdb is running. Therefore, gdb catches the signal and stops the program it is running; this

lets you do some debugging.

The command handle controls signal handling. It takes two arguments: a signal name, and what

should be done when the signal arrives. For example, let's say that you want to intercept the signal SIGPIPE,

preventing the program you"re debugging from seeing it. Whenever it arrives, though, you want the program

to stop, and you want some noti�cation. To accomplish this, give the command:

(gdb) handle SIGPIPE stop print

Note that signal names are always capital letters! You may use signal numbers instead of signal names.

C++ Programs

If you write in C++ and compile with g++, you'll �nd gdb to be a wonderful environment. It completely

understands the syntax of the language and how classes extend the concept of C structures. Let's look at a

trivial program to see how gdb treats classes and constructors. Listing 1 contains a listing produced in gdb.

In order to see the program in action, we'll set a breakpoint at the entry statement on line 24. This

declaration invokes a function, of course|the entry constructor.

(gdb) b 24

Breakpoint 1 at 0x23e4: file ref.C, line 24.

(gdb) run

Starting program: /home/los/mike1/crossref/ref

Breakpoint 1, main (argc=1, argv=0xeffffd8c) at

ref.C:24

24 entry entry 1(text 1, strlen(text 1),

ref 1);

Now we'll enter the function. We do this through the step command, just as when entering a function

in C.

(gdb) step

entry::entry (this=0xefffcb8, text=0x2390

``Finding errors in C++ programs'',

length=30, ref=0x23b0 ``errc++'') at ref.C:14

14 e text = new char(length+1);

gdb has moved to the �rst line of the entry constructor, showing us the arguments with which the function

was invoked. When we return to the main program, we can print the variable entry 1 just like any other

data structure.

(gdb) print entry 1

$1 = fe+ text = 0x6128 ``Finding errors in C++ programs'',

e reference = ``errc++'',

'ne000' <repeats 73 times>g

So C++ debugging is just as straightforward as C debugging.

Command Editing

Another useful feature is the ability to edit your commands in order to correct errors in typing. gdb

provides a subset of the editing commands available in Emacs, letting you move back and forth along the

line you're typing. For example, consider the command below:

(gdb) stop in gen and sort

If this doesn't look familiar to you, it shouldn't; it's a dbx command. We really meant to type break

gen and sort. To �x this, we can type ESC b three times, to move back over the three words in gen and sort

(spaces, underscores, and other punctuation de�ne what's meant by a \word":). Then we type ESC DEL

twice, to delete the erroneous command stop in. Finally, we type the correct command, break, followed

by RETURN to execute it:

(gdb) break gen and sort

Breakpoint 1 at 0x2544: file qsort2.c, line 79.

(gdb)

Emacs has a special mode that makes it particularly easy to use gdb. To start it, give the command ESC

x gdb. Emans prompts you for a �lename in the minibu�er:

Run gdb (like this) : gdb

Add the executable's name and press RETURN; Emacs then starts a special window for running gdb,

where you can give all regular gdb commands. When you stop at a breakpoint, gdb automatically creates a

window displaying your source code, and marking the point where you stopped, like this:

struct tms end time, *e;

int begin, end;

=> s = &start time;

e = &end time;

The mark => shows the next line to be executed. The position is updated whenever gdb stops execution|

that is, after every single-step, after every continue, etc. You amy never need to use the built-in list

command again!

