Shared Memory and Semaphores

Keith Gaughan
March 22, 2003

Contents

1 Whatis Shared Memory?
1.1 Caveatlector! e

2 What are Semaphores?
2.1 UNIXSemaphores. e e

3 Shared Memory Calls and Datatypes

3.1 shmget() o o
3.2 shmat() o o
3.3 shmdt() o e
3.4 shmctl(). o e e

341 IPCSTAT&IPCSET e e e e e e e

3.4.2 IPCRMID . . . e e e
3.5 Otherstufftoremember.
3.6 Some terribly usefulwrappers

4 Semaphore Calls and Datatypes

4.1 UNIONSEMUN . . . v o v e e e e e e e e e e e e e e e e e
4.2 structsembuf. . . . L
4.3 semget() e e e e e e
4.4 SemopP(). .« . o v e e e e e e e
45 semctl(). e e e e

45.1 IPCRMID e e e e e

452 SETALL e e e
4.6 Yetmore terribly usefulwrappers.

5 The obligatory crappy example: a chat system

6 I'm outta here!

1 WHAT IS SHARED MEMORY? 1

1 Whatis Shared Memory?

Shared memory an IP@nechanism native to UNIX. In essence, it's about two processes sharing a common
segment of memory that they can both read to and write from to communicate with one another. Nothing
more, nothing less. Just a chunk of memory. After you know where the shared memory segment is, it's just
like other part of your process’s address space, just like as if you'd just caliédc()

Because it's just memory, shared memory is the fastest IPC mechanism of them all.

To use shared memory, you'll have to include the following:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

1.1 Caveat Lector!

There’s a problem with using shared memory, a rather nasty problem—race conditions.

Shared memory is, well, shared resourceWithout some way of letting the processes that have access
to it know if it's safe to read and write to the shared memory area, you're leaving your code opee to
conditions and believe me, there be dragons!

This problem arises because these systems use what is knqweessptive multitaskingvhere the
OS takes care of managing when and for how long each process gets to execute. In such a situation, the
contents of the shared memory area can end up like stirfry very easily, and you really don’t want this to
happen.

One simple way of solving this problemsemaphores

2 What are Semaphores?

Semaphores are another IPC mechanism available when developing on UNIX. They allow different pro-
cesses to synchronise their access to certain resources.

In Computer Science, the most common and simplest kind of semaphore is chilethasemaphore
because they have two stateskedor unlocked These act much like traffic lights, except there’s no amber
for you to mistake fogo fastef.

When a process wants exclusive access to a resource, shared memory being an example, they attempt
to lock the semaphore associated with that resource. If the semaphore they are attempting to lock is already
locked, the caller is suspended, otherwise they are granted to lock. When you've finished doing whatever
you wanted to do, you unlock the resource and any processes that have attempted to lock that semaphore
in the meantime are woken up again to attempt the lock again. This way only one process can have access
to the resource at onte

In addition, semaphores can be used as a signalling mechanism. In the simple chat application appear-
ing later in the notes, the instance of the application acting as the server locks a semaphore to suspend it
until a client application unlocks the semaphore to signal that it's connected to the server and mapped the
shared memory area onto its own address space.

Versatile wee yokes, aren’t they!

2.1 UNIX Semaphores

UNIX uses a wierdly powerful version of semaphores cahleclirsive semaphoredVhat that means is
that the can have more than two states. For nearly all purposes, these kinds of semaphores are overkill, but

linterProcess Communication

2Unless you're into some serious S&M and Bondage, of course

3| cycle—'nuff said.

4For those of you who've read the notes on threads, semaphores probably sound just like mutexes. Well, for the most part they
are, only semaphores are a form of interprocess communication whereas mutexeinteetfioeadcommunication.

3 SHARED MEMORY CALLS AND DATATYPES 2

it is possible to get them to emulate binary semaphores using simple wrapper functions (these are supplied
later).

When semaphores are allocated in UNIX, they're always allocated in chunks, and each one of these
chunks has a unique ID.

3 Shared Memory Calls and Datatypes

Before we start building the chat application, it's useful to know about the functions and datatypes you'll
need to know about to use shared memory.

3.1 shmget()

Allocates a shared memory segment.

int shmget(key t key, int size, int flags);

key is the key associated with the shared memory segment you want. It's best just IB@aBRIVATE
in here.

size is the size in bytes of the shared memory segment you want allocated. Memory gets allocated in
pages, so chances are you'll probably get a little more memory than you wanted.

flags indicate how you want the segment created and its access permissions. The general rule is just to use
IPC_CREAT | SHMW | SHMR here.

The value returned is the id of the freshly allocated segment. Now all you have to do is get it attached
to your address space, and the way about that is tehaiat()

3.2 shmat()

Maps a shared memory segment onto your process’s address space.
void* shmat(int id, const void* addr, int flags);
id is the id as returned bshmget() of the shared memory segment you wish to attach.

addr is the address you want the segment mapped at. It's best tiNpd$ere as the system will choose
a suitable unused address to attach the segment at itself. The only time you'll want to specify this
yourself is when you've a specific chunk of data you want to share.

flags specifies various esoteric details about how it should be mapped. Just passrin

What is returned is a pointer to where the segment has been mapped. You can now treat it almost like
any other piece of memory you own.

3.3 shmdt()

Detaches the given segment. You need to do this when you no longer require the shared memory segment
any longer, e.g. when you program is shutting down.

int shmdt(const void* addr);

addr is the address where the shared memory segment you wish to detach is mapped.

3 SHARED MEMORY CALLS AND DATATYPES 3

3.4 shmctl()

Lets you frob, twiddle and generally mess with a shared memory segment. Why this wasn'’t broken up into
more calls, | don’t know. ..

int shmctl(int id, int cmd, struct shmid_ds* buf);

id is the segment’s id as returned §lymget()

cmd is the command you want to perform. There are thiB€ _STAT, IPC _SET, andIPC _RMID.

buf points to a buffer used byPC _STAT andIPC _SET. Whencmd is set tolPC _RMID, this should be
NULL

3.4.1 IPCSTAT &IPC _SET

These are for getting and setting information about the shared memory segmentidépteel you need

to know how to use these, typean shmctl .

3.4.2 IPCRMID

This is used to mark the segment in question as destroyed. It will actually be destroyed after the last
detach, i.e. when all the processes using the segment are gone. Thisataylsandonly be done after
you attach the segment wighmat() , or be prepared for your app to go down like an Airbus

3.5 Other stuff to remember

After a fork() , the child inherits all the attached segments. Aftereaec() or andexit() , all
attached segments are detached nimidestroye®l This is why you need to ud®C _RMID.

3.6 Some terribly useful wrappers

Here's some wrapper functions that should make dealing with shared memory just a bit easier. We’'ll need
these later. Now, go knock yourself out.

/**

Allocates a shared memory segment.

* @param n Size (in bytes) of chunk to allocate.
* @return Id of shared memory chunk.
*

~

int AllocateSharedMemory(int n)

{

assert(n > 0); /* Idiot-proof the call. */

return shmget(IPC_PRIVATE, n, IPC_CREAT | SHM_R | SHM_W);
}
/**

* Maps a shared memory segment onto our address space.

* @param id Shared memory block to map.

* @return Address of mapped block.

*/

51f you didn't get that joke, you're probably a bit younger than me, so ignore it.
8This is one of thoseoggy-haddock-making-contact-with-your-heéhithgs.

4 SEMAPHORE CALLS AND DATATYPES 4

void* MapSharedMemory(int id)

{
void* addr;
assert(id !'= 0); /* Idiot-proof the call. */
addr = shmat(id, NULL, 0); /* Attach the segment... */
shmctl(id, IPC_RMID, NULL); /* ..and mark it destroyed. */
return addr;

}

4 Semaphore Calls and Datatypes

4.1 union semun

This is aunion the semaphore library requires. For some ungodly réasts not specified in the
sys/sem.h header file and we're required to specify it ourselves. It's needesenyctl() , which
we’ll encounter later. For now, just dump the following in your code:

#if Idefined(__GNU_LIBRARY_) || defined(SEM_SEMUN_UNDEFINED)
union semun

{
int val, /I value for SETVAL
struct semid_ds* buf; /I buffer for IPC_STAT, IPC_SET
unsigned short* array; // array for GETALL, SETALL
struct seminfo* __ buf; // buffer for IPC_INFO

2

#endif

4.2 struct sembuf

Defines an operation to be performed by seeop() call. The members you need to know about are:

semnum is the index of the first semaphore to perform the operation on. Note that the index starts from
zero.

semop is the operation to perfornsemop() covers this in greater detail.

semflg specifies how the operation is supposed to be treated when the process exits. Usually you’'ll want
this to beSEMUNDGs0 it will be undone when the process exits. Passing thell@gNOWAIT
will make sure the call tsemop() doesn'’t block and instead fails if it would have blocked.

4.3 semget()

Gets a semaphore set. The value returned is its id, for use with other calls.
int semget(key _t key, int n, int flags);
key is the key associated with the semaphore set you want. Don'’t think about it—just@iseRIVATE.

n is the number of semaphores the set should contain.

flags specifies how how the set should be alloca®dMR | SHMWis the best thing to pass.

"Because the X/OPEN committee members smoked a bit too much Jamaican Gold, | reckon.

4 SEMAPHORE CALLS AND DATATYPES 5

4.4 semop()

Performs a semaphore operation (i.e. incrementing, decrementing, etc.) on the selected members of a
semaphore set. This is one of those ones that should really be a bunch of seperate calls.

int semop(int id, struct sembuf* op, unsigned n);

id is the semaphore set’s id.

op is the operation to perform.

n is the number of semaphores to affect. You'll nearly always be passing in a valueené.

struct sembuf ’'s sem_op field is important. It specifies what you want to do to the semaphore, be
it incrementing, decrementing, or toasting over an opef.fire

e A non-zero value will be added to the semaphore’s value. Note that this means negative values
indicate subtraction.

¢ A value of zero will make the operation block until the semaphore value becomes zero.

4.5 semctl()

A bit like shmctl() , but for semaphores. Again, ridiculously overcomplicated.

int semctl(int id, int iSem, int cmd, union semun arg);

id is the semaphore set id.

iSem is the semaphore you want to twiddle. Only valid with some of the commands.

cmd is the command you want to perform.

arg is used for fiddling with semaphore values. With everythingdmt set toSETALL, just passNULL
There are two values farmd worth looking at: SETALL andIPC _RMID. For details on the others,

typeman semctl .

45.1 IPCRMID

Automatically removes the semaphore set and awakens any processes waiting for a semaphore in the set
to unlock. This should be done by the last process using the semaplserastl() will return -1 if
something goes horribly wrong with this.

452 SETALL

Initialises all the semaphores in the set with a given value. Best demonstrated with some sample code.

void SetAllSemaphores(int id, short* vals)

{
union semun arg;
assert(vals '= NULL);
arg.array = vals;
semctl(id, 0, SETALL, arg);
}

Thearray field of union semun is used to specify an array of shorts holding the values you want
each one of the semaphores in the set to have.

80r maybe not. ...

4 SEMAPHORE CALLS AND DATATYPES 6

4.6 Yet more terribly useful wrappers

These wrappers around the UNIX semaphores implement plain old binary semaphores, exactly the kind
that are actually useful. We’'ll be using them later.

/**

* Creates a new semaphore set.

*

* @param n Number of semaphores in set.

* @param vals Default values to start off with.

* @return Id of semaphore set.

*

int CreateSemaphoreSet(int n, short* vals)

{
union semun arg;
int id;
assert(n > 0); /* You need at least one! */
assert(vals !'= NULL); /* And they need initialising! */
id = semget(IPC_PRIVATE, n, SHM_R | SHM_W);
arg.array = vals;
semctl(id, 0, SETALL, arg);
return id;

}

/**

* Frees up the given semaphore set.

* @param id Id of the semaphore group.
*/
void DeleteSemaphoreSet(int id)

if (semctl(id, 0, IPC_RMID, NULL) == -1)
{

perror("Error releasing semaphore!");
exit(EXIT_FAILURE);

/**

Locks a semaphore within a semaphore set.

*
*
* @param id Semaphore set it belongs to.
* @param i Actual semaphore to lock.

*

*

@note If it's already locked, you're put to sleep.
*/
void LockSemaphore(int id, int i)

{

struct sembuf sb;

sh.sem_num = i;

5 THE OBLIGATORY CRAPPY EXAMPLE: A CHAT SYSTEM 7

sh.sem_op = -1;
sh.sem_flg = SEM_UNDO;
semop(id, &sb, 1);

}

/**

* Unlocks a semaphore within a semaphore set.

* @param id Semaphore set it belongs to.

* @param i Actual semaphore to unlock.
*

void UnlockSemaphore(int id, int i)

{

struct sembuf sb;

sh.sem_num = i;
sh.sem_op = 1;
sh.sem_flg = SEM_UNDO;
semop(id, &sb, 1);

5 The obligatory crappy example: a chat system

In a vain attempt to come up with a simple and yet vaguely practical example, I'm introdDcap&hat a
rather crappy chat system. Why is it crap? Well, the two people chatting need to be on the same machine for
a start and, so as to show semaphores working, each person needs to take turns talking. It's not replacing
IRC, ICQ, talk® (type man talk some time) or any other instant messenging service any time soon.
Something like a version dfaughts and Crossesould be better, but that's out of question unfortunately.

All that's missing from this are the semaphore and shared memory wrapper functions defined earlier.
Enjoy!

I* vim:set ts=4 sw=4 noai sr sta et cin:
crapchat.c
by Keith Gaughan <kmgaughan@eircom.net>

A really crappy chat application demoing Shared Memory and
Semaphores.

Copyright (c) Keith Gaughan, 2003.

This software is free; you can redistribute it and/or modify it
under the terms of the Design Science License (DSL). If you
didn't recieve a copy of the DSL with this software, one can be
obtained at <http://www.dsl.org/copyleft/dsl.txt>.

*
*
*
*
*
*
*
*
*
*
*

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <syslog.h>
#include <sys/types.h>

9Betcha didn’t know that UNIX has had Instant Messenging for decades now!

5 THE OBLIGATORY CRAPPY EXAMPLE: A CHAT SYSTEM

#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>

/I Declarations for wrapper functions...

int AllocateSharedMemory(int n);

void* MapSharedMemory(int id);

int CreateSemaphoreSet(int n, short* vals);
void DeleteSemaphoreSet(int id);

void LockSemaphore(int id, int i);

void UnlockSemaphore(int id, int i);

/I The various semaphores used in the program.

enum

{
SEM_USER 1, // Indicates it's the first person’s turn.
SEM_USER_2 /I Indicates it's the second person’s turn.

%
int main(int argc, char* argv(])
{
int idShMem; // Shared memory handle.
int idSem; /I Semaphore set handle.
char* buf; /I Shared memory buffer address.

short vals[2]; // Values for initialising the semaphores.
int mySem; // Semaphore indicating our user.
int yourSem; // Semaphore indicating the other user.

puts("Welcome to CrapChat! Type “\quit' to exit.\n");

/I Get shared memory segment id off the command line.

if (argc < 2)

{
/I No segment id passed in, so we've got to create it.
idShMem = AllocateSharedMemory(BUFSIZ);
buf = (char*) MapSharedMemory(idShMem);

/I We want each of the users to be blocked straight off

/I when they try to lock the shared memory area. When the
/I second user starts up, they'll unlock the first so that

/I they can type. That's what the zeros are for.
vals[SEM_USER_1] = 0;

vals[SEM_USER_2] = 0;

idSem = CreateSemaphoreSet(2, vals);

/I Save the semaphore id in our shared memory so the other
/I user can get it.
((int) buf) = idSem;

/I Record which semaphores we need to wait one and signal.
mySem = SEM_USER_1;
yourSem = SEM_USER_2;

5 THE OBLIGATORY CRAPPY EXAMPLE: A CHAT SYSTEM

/Il Write out the shared memory segment id so the other who

/I wants to chat with us can know.

printf("You're user one. Shared memory id is: %d\n",
idShMem);

puts("Waiting for user two...");

else

/I We've a value! That means we're the second user.
idShMem = atoi(argv[1]);
buf = (char*) MapSharedMemory(isShMem);

/I Get the semaphore set id from shared memory.
idSem = *((int*) buf);

/I Record which semaphores we need to wait one and signal.
mySem = SEM_USER_2;
yourSem = SEM_USER_1,;

/I Put an empty string in the shared memory.
sprintf(buf, ");

/I Unlock the other user to signal they can talk.
puts("You're user two. Signalling to user one...");
UnlockSemaphore(idSem, yourSem);

}

for (;;)

{
/I Wait until it's my turn to talk.
LockSemaphore(idSem, semMe);

/I Did the other user exit?
if (strcmp(buf, "\quit\n") == 0)
break;

/I Print the reply, if any.
if (strlen(buf) > 0)
printf("Reply: %s", buf);

/I Get your response.
printf("> ");
fgets(buf, BUFSIZ, stdin);

/I Hand over to the other user.
UnlockSemaphore(idSem, semYou);

/I Do you want to exit?
if (stremp(buf, "\quit\n") == 0)
break;

}

/I First user has to deallocate the semaphores.
if (mySem == SEM_USER_1)

6 I’'M OUTTA HERE! 10

DeleteSemaphoreSet(idSem);

6 I'm outta here!

If you've any questions or comments, you'll always be able to get mekabhgaughan@eircom.rnet
though<kgaughan@mcom.cit.ie should work too. The latest version of this document should be down-
loadable from eithemy websiteor my weblog

mailto:kmgaughan@eircom.net
mailto:kgaughan@mcom.cit.ie
http://www.talideon.com/
http://hereticmessiah.weblogs.com/

	What is Shared Memory?
	Caveat Lector!

	What are Semaphores?
	UNIX Semaphores

	Shared Memory Calls and Datatypes
	shmget()
	shmat()
	shmdt()
	shmctl()
	IPC_STAT & IPC_SET
	IPC_RMID

	Other stuff to remember
	Some terribly useful wrappers

	Semaphore Calls and Datatypes
	union semun
	struct sembuf
	semget()
	semop()
	semctl()
	IPC_RMID
	SETALL

	Yet more terribly useful wrappers

	The obligatory crappy example: a chat system
	I'm outta here!

